The Placenta Regulates Intrauterine Fetal Growth via Exosomal PPARγ.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2025-02-14 DOI:10.1002/advs.202404983
Xiaofang Luo, Biao Huang, Ping Xu, Hao Wang, Baozhen Zhang, Li Lin, Jiujiang Liao, Mingyu Hu, Xiyao Liu, Jiayu Huang, Yong Fu, Mark D Kilby, Rodney E Kellems, Xiujun Fan, Yang Xia, Philip N Baker, Hongbo Qi, Chao Tong
{"title":"The Placenta Regulates Intrauterine Fetal Growth via Exosomal PPARγ.","authors":"Xiaofang Luo, Biao Huang, Ping Xu, Hao Wang, Baozhen Zhang, Li Lin, Jiujiang Liao, Mingyu Hu, Xiyao Liu, Jiayu Huang, Yong Fu, Mark D Kilby, Rodney E Kellems, Xiujun Fan, Yang Xia, Philip N Baker, Hongbo Qi, Chao Tong","doi":"10.1002/advs.202404983","DOIUrl":null,"url":null,"abstract":"<p><p>Abnormal adipogenesis is a major contributor to fetal growth restriction (FGR) and its associated complications. However, the underlying etiology remains unclear. Here, it is reported that the placentas of women with pregnancies complicated with FGR exhibit peroxisome proliferator-activated receptor γ (PPARγ) inactivation. In mice, trophoblast-specific ablation of murine PPARγ reproduces the phenotype of human fetuses with FGR and defective adipogenesis. Coculture of trophoblasts with preadipocytes significantly improves preadipocyte commitment and differentiation and increases the transcription of a series of adipogenic genes via intercellular transfer of exosomal PPARγ proteins. Moreover, nanoparticle-mediated placenta-specific delivery of rosiglitazone (RGZ) significantly rescues adipogenesis defects in an FGR-induced mouse model. In summary, the placenta is a major reservoir of PPARγ. An insufficient supply of placental PPARγ to fetal preadipocytes via exosomes during late gestation is a major mechanism underlying FGR. Preclinically, placenta-targeted RGZ administration can be a promising interventional therapy for FGR and/or defective intrauterine fat development.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2404983"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202404983","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abnormal adipogenesis is a major contributor to fetal growth restriction (FGR) and its associated complications. However, the underlying etiology remains unclear. Here, it is reported that the placentas of women with pregnancies complicated with FGR exhibit peroxisome proliferator-activated receptor γ (PPARγ) inactivation. In mice, trophoblast-specific ablation of murine PPARγ reproduces the phenotype of human fetuses with FGR and defective adipogenesis. Coculture of trophoblasts with preadipocytes significantly improves preadipocyte commitment and differentiation and increases the transcription of a series of adipogenic genes via intercellular transfer of exosomal PPARγ proteins. Moreover, nanoparticle-mediated placenta-specific delivery of rosiglitazone (RGZ) significantly rescues adipogenesis defects in an FGR-induced mouse model. In summary, the placenta is a major reservoir of PPARγ. An insufficient supply of placental PPARγ to fetal preadipocytes via exosomes during late gestation is a major mechanism underlying FGR. Preclinically, placenta-targeted RGZ administration can be a promising interventional therapy for FGR and/or defective intrauterine fat development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Enhanced Field-Like Torque Generated from the Anisotropic Spin-Split Effect in Triple-Domain RuO2 for Energy-Efficient Spin-Orbit Torque Magnetic Random-Access Memory. Excellent Dynamic Non-Wetting Performance Induced by Asymmetric Structure at Low Temperatures: Retraction Actuation and Nucleation Inhibition. Exciton-Photon Coupling Microcavity as a Selective Biosensing Platform for Nonlocal Terahertz Metamaterials. Functional Divergence of Plant-Derived Thaumatin-Like Protein Genes in Two Closely Related Whitefly Species. A CLDN18.2-Targeted Nanoplatform Manipulates Magnetic Hyperthermia Spatiotemporally for Synergistic Immunotherapy in Gastric Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1