ModelArchive: a deposition database for computational macromolecular structural models.

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Biology Pub Date : 2025-02-11 DOI:10.1016/j.jmb.2025.168996
Gerardo Tauriello, Andrew M Waterhouse, Juergen Haas, Dario Behringer, Stefan Bienert, Thomas Garello, Torsten Schwede
{"title":"ModelArchive: a deposition database for computational macromolecular structural models.","authors":"Gerardo Tauriello, Andrew M Waterhouse, Juergen Haas, Dario Behringer, Stefan Bienert, Thomas Garello, Torsten Schwede","doi":"10.1016/j.jmb.2025.168996","DOIUrl":null,"url":null,"abstract":"<p><p>A wide range of applications in life science research benefit from the availability of three-dimensional structures of biological macromolecules as they provide valuable insights into their molecular function. Recent advances in structure prediction techniques have made it possible to generate high quality computational macromolecular structural models for almost all known proteins. In this context, ModelArchive (https://modelarchive.org/) serves as a deposition database for computational models, complementing the Protein Data Bank (PDB) and PDB-IHM, which require experimental data, and specialised databases such as the AlphaFold DB. ModelArchive contains over 600,000 models contributed by researchers using a variety of modelling techniques. It supports single biological macromolecules and complexes, including any combination of polymers and small molecules. Each deposited model can be referenced in manuscripts using an immutable accession code provided by ModelArchive. Depositors are required to provide a minimal set of information about the modelling process and the expected accuracy of the resulting model, enabling scientific reproducibility and maximising the potential reuse of the models. The vast majority of models in ModelArchive use the ModelCIF format which includes coordinates and metadata, allows for programmatic validation of the models, and makes the models interoperable with structures obtained from other sources such as the PDB. The ModelArchive web service provides access to the models and search queries. Model findability is also provided in external services either through APIs or by importing data from ModelArchive.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"168996"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2025.168996","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A wide range of applications in life science research benefit from the availability of three-dimensional structures of biological macromolecules as they provide valuable insights into their molecular function. Recent advances in structure prediction techniques have made it possible to generate high quality computational macromolecular structural models for almost all known proteins. In this context, ModelArchive (https://modelarchive.org/) serves as a deposition database for computational models, complementing the Protein Data Bank (PDB) and PDB-IHM, which require experimental data, and specialised databases such as the AlphaFold DB. ModelArchive contains over 600,000 models contributed by researchers using a variety of modelling techniques. It supports single biological macromolecules and complexes, including any combination of polymers and small molecules. Each deposited model can be referenced in manuscripts using an immutable accession code provided by ModelArchive. Depositors are required to provide a minimal set of information about the modelling process and the expected accuracy of the resulting model, enabling scientific reproducibility and maximising the potential reuse of the models. The vast majority of models in ModelArchive use the ModelCIF format which includes coordinates and metadata, allows for programmatic validation of the models, and makes the models interoperable with structures obtained from other sources such as the PDB. The ModelArchive web service provides access to the models and search queries. Model findability is also provided in external services either through APIs or by importing data from ModelArchive.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
期刊最新文献
Queuine: A Bacterial Nucleobase Shaping Translation in Eukaryotes. RNA-modification by Base Exchange: Structure, Function and Application of tRNA-guanine Transglycosylases. Outside Front Cover Editorial Board Dockground: The resource expands to protein-RNA interactome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1