Deep learning-based clustering for endotyping and post-arthroplasty response classification using knee osteoarthritis multiomic data.

IF 20.3 1区 医学 Q1 RHEUMATOLOGY Annals of the Rheumatic Diseases Pub Date : 2025-02-12 DOI:10.1016/j.ard.2025.01.012
Jason S Rockel, Divya Sharma, Osvaldo Espin-Garcia, Katrina Hueniken, Amit Sandhu, Chiara Pastrello, Kala Sundararajan, Pratibha Potla, Noah Fine, Starlee S Lively, Kim Perry, Nizar N Mahomed, Khalid Syed, Igor Jurisica, Anthony V Perruccio, Y Raja Rampersaud, Rajiv Gandhi, Mohit Kapoor
{"title":"Deep learning-based clustering for endotyping and post-arthroplasty response classification using knee osteoarthritis multiomic data.","authors":"Jason S Rockel, Divya Sharma, Osvaldo Espin-Garcia, Katrina Hueniken, Amit Sandhu, Chiara Pastrello, Kala Sundararajan, Pratibha Potla, Noah Fine, Starlee S Lively, Kim Perry, Nizar N Mahomed, Khalid Syed, Igor Jurisica, Anthony V Perruccio, Y Raja Rampersaud, Rajiv Gandhi, Mohit Kapoor","doi":"10.1016/j.ard.2025.01.012","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Primary knee osteoarthritis (KOA) is a heterogeneous disease with clinical and molecular contributors. Biofluids contain microRNAs and metabolites that can be measured by omic technologies. Multimodal deep learning is adept at uncovering complex relationships within multidomain data. We developed a novel multimodal deep learning framework for clustering of multiomic data from 3 subject-matched biofluids to identify distinct KOA endotypes and classify 1-year post-total knee arthroplasty (TKA) pain/function responses.</p><p><strong>Methods: </strong>In 414 patients with KOA, subject-matched plasma, synovial fluid, and urine were analysed using microRNA sequencing or metabolomics. Integrating 4 high-dimensional datasets comprising metabolites from plasma and microRNAs from plasma, synovial fluid, or urine, a multimodal deep learning variational autoencoder architecture with K-means clustering was employed. Features influencing cluster assignment were identified and pathway analyses conducted. An integrative machine learning framework combining 4 molecular domains and a clinical domain was then used to classify Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain/function responses after TKA within each cluster.</p><p><strong>Results: </strong>Multimodal deep learning-based clustering of subjects across 4 domains yielded 3 distinct patient clusters. Feature signatures comprising microRNAs and metabolites across biofluids included 30, 16, and 24 features associated with clusters 1 to 3, respectively. Pathway analyses revealed distinct pathways associated with each cluster. Integration of 4 multiomic domains along with clinical data improved response classification performance, surpassing individual domain classifications alone.</p><p><strong>Conclusions: </strong>We developed a multimodal deep learning-based clustering model capable of integrating complex multifluid, multiomic data to assist in uncovering biologically distinct patient endotypes and enhance outcome classifications to TKA surgery, which may aid in future precision medicine approaches.</p>","PeriodicalId":8087,"journal":{"name":"Annals of the Rheumatic Diseases","volume":" ","pages":""},"PeriodicalIF":20.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Rheumatic Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ard.2025.01.012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RHEUMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Primary knee osteoarthritis (KOA) is a heterogeneous disease with clinical and molecular contributors. Biofluids contain microRNAs and metabolites that can be measured by omic technologies. Multimodal deep learning is adept at uncovering complex relationships within multidomain data. We developed a novel multimodal deep learning framework for clustering of multiomic data from 3 subject-matched biofluids to identify distinct KOA endotypes and classify 1-year post-total knee arthroplasty (TKA) pain/function responses.

Methods: In 414 patients with KOA, subject-matched plasma, synovial fluid, and urine were analysed using microRNA sequencing or metabolomics. Integrating 4 high-dimensional datasets comprising metabolites from plasma and microRNAs from plasma, synovial fluid, or urine, a multimodal deep learning variational autoencoder architecture with K-means clustering was employed. Features influencing cluster assignment were identified and pathway analyses conducted. An integrative machine learning framework combining 4 molecular domains and a clinical domain was then used to classify Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain/function responses after TKA within each cluster.

Results: Multimodal deep learning-based clustering of subjects across 4 domains yielded 3 distinct patient clusters. Feature signatures comprising microRNAs and metabolites across biofluids included 30, 16, and 24 features associated with clusters 1 to 3, respectively. Pathway analyses revealed distinct pathways associated with each cluster. Integration of 4 multiomic domains along with clinical data improved response classification performance, surpassing individual domain classifications alone.

Conclusions: We developed a multimodal deep learning-based clustering model capable of integrating complex multifluid, multiomic data to assist in uncovering biologically distinct patient endotypes and enhance outcome classifications to TKA surgery, which may aid in future precision medicine approaches.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of the Rheumatic Diseases
Annals of the Rheumatic Diseases 医学-风湿病学
CiteScore
35.00
自引率
9.90%
发文量
3728
审稿时长
1.4 months
期刊介绍: Annals of the Rheumatic Diseases (ARD) is an international peer-reviewed journal covering all aspects of rheumatology, which includes the full spectrum of musculoskeletal conditions, arthritic disease, and connective tissue disorders. ARD publishes basic, clinical, and translational scientific research, including the most important recommendations for the management of various conditions.
期刊最新文献
Thalidomide can effectively prevent relapse in IgG4-related disease outweighing its side effects: a multicentre, randomised, double-blinded, placebo-controlled study. How to treat undifferentiated arthritis today or tomorrow? A consideration of treatment recommendations in light of current evidence. Predictors of arthritis development in individuals at risk of rheumatoid arthritis: a 5-year follow-up study from a large cohort. Methotrexate osteopathy: an increasingly recognised condition manageable only through methotrexate discontinuation. Physician's global assessment of disease activity in juvenile idiopathic arthritis: consensus-based recommendations from an international task force.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1