Endurance exercise remodels skeletal muscle by suppressing Ythdf1-mediated myostatin expression.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2025-02-13 DOI:10.1038/s41419-025-07379-5
Xin Huang, Chenzhong Xu, Jie Zhang, Weiwei Wu, Zimei Wang, Qiuxiang Pang, Zuojun Liu, Baohua Liu
{"title":"Endurance exercise remodels skeletal muscle by suppressing Ythdf1-mediated myostatin expression.","authors":"Xin Huang, Chenzhong Xu, Jie Zhang, Weiwei Wu, Zimei Wang, Qiuxiang Pang, Zuojun Liu, Baohua Liu","doi":"10.1038/s41419-025-07379-5","DOIUrl":null,"url":null,"abstract":"<p><p>Exercise can improve health via skeletal muscle remodeling. Elucidating the underlying mechanism may lead to new therapeutics for aging-related loss of skeletal muscle mass. Here, we show that endurance exercise suppresses expression of YT521-B homology domain family (Ythdf1) in skeletal muscle, which recognizes the N6-methyladenosine (m6A). Ythdf1 deletion phenocopies endurance exercise-induced muscle hypertrophy in mice increases muscle mitochondria content and type I fiber specification. At the molecular level, Ythdf1 recognizes and promotes the translation of m6A-modified Mstn mRNA, which encodes a muscle growth inhibitor, Myostatin. Loss of Ythdf1 leads to hyperactivation of skeletal muscle stem cells (MuSCs), also called satellite cells (SCs), enhancing muscle growth and injury-induced regeneration. Our data reveal Ythdf1 as a key regulator of skeletal muscle homeostasis, provide insights into the mechanism by which endurance exercise promotes skeletal muscle remodeling and highlight potential strategies to prevent aging-related muscle degeneration.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"96"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07379-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Exercise can improve health via skeletal muscle remodeling. Elucidating the underlying mechanism may lead to new therapeutics for aging-related loss of skeletal muscle mass. Here, we show that endurance exercise suppresses expression of YT521-B homology domain family (Ythdf1) in skeletal muscle, which recognizes the N6-methyladenosine (m6A). Ythdf1 deletion phenocopies endurance exercise-induced muscle hypertrophy in mice increases muscle mitochondria content and type I fiber specification. At the molecular level, Ythdf1 recognizes and promotes the translation of m6A-modified Mstn mRNA, which encodes a muscle growth inhibitor, Myostatin. Loss of Ythdf1 leads to hyperactivation of skeletal muscle stem cells (MuSCs), also called satellite cells (SCs), enhancing muscle growth and injury-induced regeneration. Our data reveal Ythdf1 as a key regulator of skeletal muscle homeostasis, provide insights into the mechanism by which endurance exercise promotes skeletal muscle remodeling and highlight potential strategies to prevent aging-related muscle degeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
"Friends or foes": a new perspective of tumour metabolic transcriptional modification. BRD1 deficiency affects SREBF1-related lipid metabolism through regulating H3K9ac/H3K9me3 transition to inhibit HCC progression. Small molecule-mediated inhibition of the oxidoreductase ERO1A restrains aggressive breast cancer by impairing VEGF and PD-L1 in the tumor microenvironment. WNT inhibitor SP5-mediated SERPING1 suppresses lung adenocarcinoma progression via TSC2/mTOR pathway. MAGI3 enhances sensitivity to sunitinib in renal cell carcinoma by suppressing the MAS/ERK axis and serves as a prognostic marker.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1