Jiawei Wan, Qiubo Zhang, Ershuai Liu, Yi Chen, Jiana Zheng, Amy Ren, Walter S Drisdell, Haimei Zheng
{"title":"<i>In-situ</i>/<i>operando</i> study of Cu-based nanocatalysts for CO<sub>2</sub> electroreduction using electrochemical liquid cell TEM.","authors":"Jiawei Wan, Qiubo Zhang, Ershuai Liu, Yi Chen, Jiana Zheng, Amy Ren, Walter S Drisdell, Haimei Zheng","doi":"10.3389/fchem.2025.1525245","DOIUrl":null,"url":null,"abstract":"<p><p>The structure of a nanocatalyst during electrocatalytic reactions often deviates from its pristine structure due to intrinsic properties, or physical and chemical adsorption at the catalytic surfaces. Taking Cu-based catalysts for CO<sub>2</sub> electroreduction reactions (CO<sub>2</sub>RR) as an example, they often experience segregation, leaching, and alloying during reactions. With the recent breakthrough development of high-resolution polymer electrochemical liquid cells, <i>in-situ</i> electrochemical liquid cell transmission electron microscopy (EC-TEM) alongside other advanced microscopy techniques, has become a powerful platform for revealing electrocatalysts restructuring at the atomic level. Considering the complex reactions involving electrified solid-liquid interfaces and catalyst structural evolution with intermediates, systematic studies with multimodal approaches are crucial. In this article, we demonstrate a research protocol for the study of electrocatalysts structural evolution during reactions using the <i>in-situ</i> EC-TEM platform. Using Cu and CuAg nanowire catalysts for CO<sub>2</sub>RR as model systems, we describe the experimental procedures and findings. We highlight the platform's crucial role in elucidating atomic-scale pathways of nanocatalyst restructuring and identifying catalytic active sites, as well as avoiding potential artifacts to ensure unbiased conclusions. Using the multimodal characterization toolbox, we provide the opportunity to correlate the structure of a working catalyst with its performance. Finally, we discuss advancements as well as the remaining gap in elucidating the structural-performance relationship of working catalysts. We expect this article will assist in establishing guidelines for future investigations of complex electrochemical reactions, such as CO₂RR and other catalytic processes, using the <i>in-situ</i> EC-TEM platform.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1525245"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1525245","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The structure of a nanocatalyst during electrocatalytic reactions often deviates from its pristine structure due to intrinsic properties, or physical and chemical adsorption at the catalytic surfaces. Taking Cu-based catalysts for CO2 electroreduction reactions (CO2RR) as an example, they often experience segregation, leaching, and alloying during reactions. With the recent breakthrough development of high-resolution polymer electrochemical liquid cells, in-situ electrochemical liquid cell transmission electron microscopy (EC-TEM) alongside other advanced microscopy techniques, has become a powerful platform for revealing electrocatalysts restructuring at the atomic level. Considering the complex reactions involving electrified solid-liquid interfaces and catalyst structural evolution with intermediates, systematic studies with multimodal approaches are crucial. In this article, we demonstrate a research protocol for the study of electrocatalysts structural evolution during reactions using the in-situ EC-TEM platform. Using Cu and CuAg nanowire catalysts for CO2RR as model systems, we describe the experimental procedures and findings. We highlight the platform's crucial role in elucidating atomic-scale pathways of nanocatalyst restructuring and identifying catalytic active sites, as well as avoiding potential artifacts to ensure unbiased conclusions. Using the multimodal characterization toolbox, we provide the opportunity to correlate the structure of a working catalyst with its performance. Finally, we discuss advancements as well as the remaining gap in elucidating the structural-performance relationship of working catalysts. We expect this article will assist in establishing guidelines for future investigations of complex electrochemical reactions, such as CO₂RR and other catalytic processes, using the in-situ EC-TEM platform.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.