Cross prior Bayesian attention with correlated inception and residual learning for brain tumor classification using MR images (CB-CIRL Net)

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Neuroscience Methods Pub Date : 2025-02-11 DOI:10.1016/j.jneumeth.2025.110392
B. Vijayalakshmi , S. Anand
{"title":"Cross prior Bayesian attention with correlated inception and residual learning for brain tumor classification using MR images (CB-CIRL Net)","authors":"B. Vijayalakshmi ,&nbsp;S. Anand","doi":"10.1016/j.jneumeth.2025.110392","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Brain tumor classification from magnetic resonance (MR) images is crucial for early diagnosis and effective treatment planning. However, the homogeneity of tumors across different categories poses a challenge. Although, attention-based convolutional neural networks (CNNs) approaches have shown promising results in brain tumor classification, simultaneous consideration of both spatial and channel-specific features remains limited.</div></div><div><h3>Methods</h3><div>This study proposes a novel model that integrates Bi-FocusNet with correlated learning and CB-Attention. Bi-FocusNet is designed to concentrate on both spatial and channel-wise tumor features by using two complementary learning methodologies: correlated spatial inception learning and correlated channel residual learning. These learnings extract richer and more diverse feature representations from tumor lesions of varied sizes, significantly enhancing the model’s learning capacity. The CB-Attention mechanism works as a cross-learning module, facilitating interaction between the two learning methods to capture the missing information across spatial and channel-wise features.</div></div><div><h3>Results</h3><div>Ablation studies and experiments were conducted using the BT-large-2c, Figshare, and Kaggle datasets. The proposed model outperformed existing classification methods in accuracy and other metrics, demonstrating enhanced performance on all three datasets with accuracies of 99.02 %, 97.06 %, and 96.44 %, respectively. Additionally, the BT-Merged-4c dataset was used to assess the ability to handle class variation, and 96.28 % accuracy was achieved.</div></div><div><h3>Conclusion</h3><div>The CB-CIRL Net improves the extraction of spatial and channel-wise features through the utilization of Bi-FocusNet with correlated learning and CB-Attention, resulting in enhanced classification accuracy across various datasets. The model's outstanding performance demonstrates its capacity to improve brain tumor diagnosis and clinical application.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"417 ","pages":"Article 110392"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025000330","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Brain tumor classification from magnetic resonance (MR) images is crucial for early diagnosis and effective treatment planning. However, the homogeneity of tumors across different categories poses a challenge. Although, attention-based convolutional neural networks (CNNs) approaches have shown promising results in brain tumor classification, simultaneous consideration of both spatial and channel-specific features remains limited.

Methods

This study proposes a novel model that integrates Bi-FocusNet with correlated learning and CB-Attention. Bi-FocusNet is designed to concentrate on both spatial and channel-wise tumor features by using two complementary learning methodologies: correlated spatial inception learning and correlated channel residual learning. These learnings extract richer and more diverse feature representations from tumor lesions of varied sizes, significantly enhancing the model’s learning capacity. The CB-Attention mechanism works as a cross-learning module, facilitating interaction between the two learning methods to capture the missing information across spatial and channel-wise features.

Results

Ablation studies and experiments were conducted using the BT-large-2c, Figshare, and Kaggle datasets. The proposed model outperformed existing classification methods in accuracy and other metrics, demonstrating enhanced performance on all three datasets with accuracies of 99.02 %, 97.06 %, and 96.44 %, respectively. Additionally, the BT-Merged-4c dataset was used to assess the ability to handle class variation, and 96.28 % accuracy was achieved.

Conclusion

The CB-CIRL Net improves the extraction of spatial and channel-wise features through the utilization of Bi-FocusNet with correlated learning and CB-Attention, resulting in enhanced classification accuracy across various datasets. The model's outstanding performance demonstrates its capacity to improve brain tumor diagnosis and clinical application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
期刊最新文献
Editorial Board Establishing the electrical physiological feasibility of the rabbit median nerve as an experimental model for carpal tunnel syndrome. Enhancing therapeutic efficacy of Fingolimod via Intranasal Delivery in an Ethidium Bromide-induced Model of Multiple Sclerosis. Multi-view graph fusion of self-weighted EEG feature representations for speech imagery decoding. Direction of TIS envelope electric field: Perpendicular to the longitudinal axis of the hippocampus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1