Pharmacokinetics and protein binding of cholesterol-conjugated heteroduplex oligonucleotide

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Controlled Release Pub Date : 2025-02-18 DOI:10.1016/j.jconrel.2025.02.025
Yukitake Yoshioka , Syunsuke Yamamoto , Kosuke Kusamori , Miyu Nakayama , Hisashi Fujita , Akihiko Goto , Shinji Iwasaki , Tetsuya Nagata , Shoko Itakura , Hiroyuki Kusuhara , Takanori Yokota , Hideki Hirabayashi , Makiya Nishikawa
{"title":"Pharmacokinetics and protein binding of cholesterol-conjugated heteroduplex oligonucleotide","authors":"Yukitake Yoshioka ,&nbsp;Syunsuke Yamamoto ,&nbsp;Kosuke Kusamori ,&nbsp;Miyu Nakayama ,&nbsp;Hisashi Fujita ,&nbsp;Akihiko Goto ,&nbsp;Shinji Iwasaki ,&nbsp;Tetsuya Nagata ,&nbsp;Shoko Itakura ,&nbsp;Hiroyuki Kusuhara ,&nbsp;Takanori Yokota ,&nbsp;Hideki Hirabayashi ,&nbsp;Makiya Nishikawa","doi":"10.1016/j.jconrel.2025.02.025","DOIUrl":null,"url":null,"abstract":"<div><div>Heteroduplex oligonucleotide (HDO) is a novel oligonucleotide therapeutic consisting of an antisense oligonucleotide (ASO) and its complementary RNA. A recent report showed that cholesterol-conjugated HDO (Chol-HDO) exhibited antisense activity in various tissues, including the brain; however, little information is available on the pharmacokinetic and plasma protein-binding properties of HDO and Chol-HDO. In the present study, we investigated the tissue distributions of an ASO, HDO, and Chol-HDO in mice and rats after intravenous injection. Tissue distribution was evaluated by measuring the concentration of ASO in tissue samples using liquid chromatography and tandem mass spectroscopy. ASO and HDO disappeared rapidly from the plasma, whereas Chol-HDO showed prolonged retention in the systemic circulation. The amount of ASO in the brain tissue was highest after injection of Chol-HDO, confirming its efficient delivery to the brain. The tissue distribution of oligonucleotides differed less in rats than in mice. Hepatic uptake of ASO and HDO, but not of Chol-HDO, was significantly inhibited by co-administration with the scavenger receptor inhibitor dextran sulfate sodium. The binding to plasma proteins was evaluated. Compared to ASO, HDO showed lower protein binding, but Chol-HDO showed much higher binding, with remarkable differences in binding to high-density and low-density lipoproteins. The binding of Chol-HDO to these proteins was also confirmed in mouse plasma after injection. These results indicate that the binding of Chol-HDO to plasma proteins, especially lipoproteins, is critical for determining tissue distribution and brain delivery after intravenous injection.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"380 ","pages":"Pages 787-799"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925001385","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heteroduplex oligonucleotide (HDO) is a novel oligonucleotide therapeutic consisting of an antisense oligonucleotide (ASO) and its complementary RNA. A recent report showed that cholesterol-conjugated HDO (Chol-HDO) exhibited antisense activity in various tissues, including the brain; however, little information is available on the pharmacokinetic and plasma protein-binding properties of HDO and Chol-HDO. In the present study, we investigated the tissue distributions of an ASO, HDO, and Chol-HDO in mice and rats after intravenous injection. Tissue distribution was evaluated by measuring the concentration of ASO in tissue samples using liquid chromatography and tandem mass spectroscopy. ASO and HDO disappeared rapidly from the plasma, whereas Chol-HDO showed prolonged retention in the systemic circulation. The amount of ASO in the brain tissue was highest after injection of Chol-HDO, confirming its efficient delivery to the brain. The tissue distribution of oligonucleotides differed less in rats than in mice. Hepatic uptake of ASO and HDO, but not of Chol-HDO, was significantly inhibited by co-administration with the scavenger receptor inhibitor dextran sulfate sodium. The binding to plasma proteins was evaluated. Compared to ASO, HDO showed lower protein binding, but Chol-HDO showed much higher binding, with remarkable differences in binding to high-density and low-density lipoproteins. The binding of Chol-HDO to these proteins was also confirmed in mouse plasma after injection. These results indicate that the binding of Chol-HDO to plasma proteins, especially lipoproteins, is critical for determining tissue distribution and brain delivery after intravenous injection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
期刊最新文献
Tannic acid‑cerium nanoenzymes serve as broad-spectrum antioxidants to alleviate acute kidney injury by modulating macrophage polarization, mitophagy and endoplasmic reticulum stress Optimized suction patch design for enhanced transbuccal macromolecular drug delivery Activated platelet membrane vesicles for broad-spectrum bacterial pulmonary infections management A lipid starvation strategy-synergized neutrophil activation for postoperative melanoma immunotherapy Multidrug micelles and sonopermeation for chemotherapy co-delivery to brain tumors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1