Genetic analysis of autosomal dominant polycystic kidney disease in Iranian families: a combined Sanger and next-generation sequencing study.

IF 2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Applied Genetics Pub Date : 2025-02-14 DOI:10.1007/s13353-024-00937-1
Maryam Rafiee, Masoumeh Razipour, Mohammad Keramatipour, Jamshid Roozbeh, Mona Entezam
{"title":"Genetic analysis of autosomal dominant polycystic kidney disease in Iranian families: a combined Sanger and next-generation sequencing study.","authors":"Maryam Rafiee, Masoumeh Razipour, Mohammad Keramatipour, Jamshid Roozbeh, Mona Entezam","doi":"10.1007/s13353-024-00937-1","DOIUrl":null,"url":null,"abstract":"<p><p>Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited renal disorder, primarily caused by mutations in the PKD1 and PKD2. Genetic testing is valuable for the diagnosis, prognosis, and clinical management of ADPKD. Next-generation sequencing (NGS) techniques can overcome the limitations of traditional Sanger sequencing for the genetic diagnosis of ADPKD. This study included 18 Iranian ADPKD families. Long-range PCR and Sanger sequencing were used to analyze PKD1 and PKD2. Subsequently, NGS-based gene panel testing and whole-exome sequencing (WES) were also performed in selected families. Pathogenic/likely pathogenic variants were identified in 13/18 families (72.2%), including 9 in PKD1 and 4 in PKD2. Five novel variants were discovered (c.10016C > A, c.2096_2097 + 4del, c.12138 + 5G > C in PKD1; c.2359-8_2373del, c.180_181delGC in PKD2). Additionally, WES revealed a pathogenic PKD1 frameshift deletion (c.11376delG) in one genetically unresolved family, likely missed by initial Sanger sequencing due to allelic dropout. This study expands the mutational spectrum of PKD1/PKD2 with five novel variants. The findings demonstrate the advantages of NGS over conventional Sanger sequencing methods. The genetically unresolved cases suggest the potential involvement of variants within non-coding regions, large copy number variations, or novel genes in ADPKD pathogenesis. Whole-genome sequencing is warranted to investigate these unresolved cases further.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13353-024-00937-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited renal disorder, primarily caused by mutations in the PKD1 and PKD2. Genetic testing is valuable for the diagnosis, prognosis, and clinical management of ADPKD. Next-generation sequencing (NGS) techniques can overcome the limitations of traditional Sanger sequencing for the genetic diagnosis of ADPKD. This study included 18 Iranian ADPKD families. Long-range PCR and Sanger sequencing were used to analyze PKD1 and PKD2. Subsequently, NGS-based gene panel testing and whole-exome sequencing (WES) were also performed in selected families. Pathogenic/likely pathogenic variants were identified in 13/18 families (72.2%), including 9 in PKD1 and 4 in PKD2. Five novel variants were discovered (c.10016C > A, c.2096_2097 + 4del, c.12138 + 5G > C in PKD1; c.2359-8_2373del, c.180_181delGC in PKD2). Additionally, WES revealed a pathogenic PKD1 frameshift deletion (c.11376delG) in one genetically unresolved family, likely missed by initial Sanger sequencing due to allelic dropout. This study expands the mutational spectrum of PKD1/PKD2 with five novel variants. The findings demonstrate the advantages of NGS over conventional Sanger sequencing methods. The genetically unresolved cases suggest the potential involvement of variants within non-coding regions, large copy number variations, or novel genes in ADPKD pathogenesis. Whole-genome sequencing is warranted to investigate these unresolved cases further.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Genetics
Journal of Applied Genetics 生物-生物工程与应用微生物
CiteScore
4.30
自引率
4.20%
发文量
62
审稿时长
6-12 weeks
期刊介绍: The Journal of Applied Genetics is an international journal on genetics and genomics. It publishes peer-reviewed original papers, short communications (including case reports) and review articles focused on the research of applicative aspects of plant, human, animal and microbial genetics and genomics.
期刊最新文献
CALR-mutant myeloproliferative neoplasms: insights from next-generation sequencing. Utilization of doubled haploid breeding approach in introgression of QTL/gene(s) for parental line improvement of hybrid rice. Genetic analysis of autosomal dominant polycystic kidney disease in Iranian families: a combined Sanger and next-generation sequencing study. Hfq influences ciprofloxacin accumulation in Escherichia coli independently of ompC and ompF post-transcriptional regulation. Scope for a threshold animal model for genetic evaluation for hip dysplasia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1