Jae-Hyun Cho, Gyu Min Lee, Seyoung Ko, Youngju Kim, Donghyuk Kim
{"title":"Characterization and therapeutic potential of newly isolated bacteriophages against <i>Staphylococcus</i> species in bovine mastitis.","authors":"Jae-Hyun Cho, Gyu Min Lee, Seyoung Ko, Youngju Kim, Donghyuk Kim","doi":"10.1128/jvi.01901-24","DOIUrl":null,"url":null,"abstract":"<p><p>Bovine mastitis, primarily caused by <i>Staphylococcus aureus</i>, significantly affects the dairy industry by reducing milk production and quality. The rise of antibiotic-resistant bacteria has prompted the need for alternative treatments. The three newly isolated bacteriophages, OPT-SA02, OPT-SC01, and OPT-SX11, were isolated from chicken fecal and sewage samples in South Korea. These bacteriophages were characterized via physiological and genomic analyses, identifying their therapeutic potential against <i>S. aureus</i>-induced mastitis. The bacteriophages were identified as members of the <i>Herelleviridae</i> family, exhibiting stability across broad pH (2-12) and temperature (37-70°C) ranges, as well as strong antibacterial activity at low multiplicity of infection (MOI) levels. Genomic analysis revealed that the conservation of lysis-related genes (holin and endolysin) is responsible for their lytic capabilities. Additionally, protein structural predictions revealed multi-domain structures in their endolysins, enhancing their lytic potential. These findings suggest that OPT-SA02, OPT-SC01, and OPT-SX11 show significant promise as alternative treatments for bovine mastitis.IMPORTANCEBovine mastitis, caused by pathogens such as <i>Staphylococcus aureus</i> and <i>Staphylococcus xylosus</i>, remains a major challenge in dairy farming, leading to significant economic losses and reduced milk quality. The increasing prevalence of antibiotic-resistant strains further complicates treatment, emphasizing the need for alternative strategies. This study identifies three newly isolated bacteriophages with effective antibacterial activity against these pathogens and provides comprehensive genomic and structural insights into their mechanisms. Genomic characterization revealed conserved lytic cassettes and genetic diversity within related bacteriophages, offering a deeper understanding of their evolutionary relationships and potential applications. Furthermore, protein structure analysis of the endolysin derived from these bacteriophages identified multi-domain architectures with preserved catalytic cores, underscoring their lytic efficacy against bacterial cell walls. These findings advance the understanding of the genetic and structural mechanisms of bacteriophage-mediated lysis and highlight their potential as sustainable tools for managing bovine mastitis and improving milk quality in dairy farming.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0190124"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01901-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bovine mastitis, primarily caused by Staphylococcus aureus, significantly affects the dairy industry by reducing milk production and quality. The rise of antibiotic-resistant bacteria has prompted the need for alternative treatments. The three newly isolated bacteriophages, OPT-SA02, OPT-SC01, and OPT-SX11, were isolated from chicken fecal and sewage samples in South Korea. These bacteriophages were characterized via physiological and genomic analyses, identifying their therapeutic potential against S. aureus-induced mastitis. The bacteriophages were identified as members of the Herelleviridae family, exhibiting stability across broad pH (2-12) and temperature (37-70°C) ranges, as well as strong antibacterial activity at low multiplicity of infection (MOI) levels. Genomic analysis revealed that the conservation of lysis-related genes (holin and endolysin) is responsible for their lytic capabilities. Additionally, protein structural predictions revealed multi-domain structures in their endolysins, enhancing their lytic potential. These findings suggest that OPT-SA02, OPT-SC01, and OPT-SX11 show significant promise as alternative treatments for bovine mastitis.IMPORTANCEBovine mastitis, caused by pathogens such as Staphylococcus aureus and Staphylococcus xylosus, remains a major challenge in dairy farming, leading to significant economic losses and reduced milk quality. The increasing prevalence of antibiotic-resistant strains further complicates treatment, emphasizing the need for alternative strategies. This study identifies three newly isolated bacteriophages with effective antibacterial activity against these pathogens and provides comprehensive genomic and structural insights into their mechanisms. Genomic characterization revealed conserved lytic cassettes and genetic diversity within related bacteriophages, offering a deeper understanding of their evolutionary relationships and potential applications. Furthermore, protein structure analysis of the endolysin derived from these bacteriophages identified multi-domain architectures with preserved catalytic cores, underscoring their lytic efficacy against bacterial cell walls. These findings advance the understanding of the genetic and structural mechanisms of bacteriophage-mediated lysis and highlight their potential as sustainable tools for managing bovine mastitis and improving milk quality in dairy farming.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.