{"title":"RPA(D) and HRPA(D): Calculating NMR Spin-Spin Coupling Constants in Free Amino Acid Residues.","authors":"Christoffer H S Møller, Stephan P A Sauer","doi":"10.1002/mrc.5514","DOIUrl":null,"url":null,"abstract":"<p><p>In the pursuit of computational methods which boast both low computational cost and a high degree of accuracy, the SOPPA-derived methods RPA(D) and HRPA(D) are showing great promise. This study aims to further the benchmarking of these two methods in comparison with both the original SOPPA and the CCSD method by calculating NMR spin-spin coupling constants in the backbone structure of free amino acid residues. Based on a small basis set study, the relative performance of the methods was not found to be heavily dependent on the size of the basis set. While HRPA(D) was found to reproduce the SOPPA results to a consistently high degree of accuracy, RPA(D) reproduced the CCSD results for the one-bond coupling constants more accurately than both HRPA(D) and SOPPA.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/mrc.5514","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the pursuit of computational methods which boast both low computational cost and a high degree of accuracy, the SOPPA-derived methods RPA(D) and HRPA(D) are showing great promise. This study aims to further the benchmarking of these two methods in comparison with both the original SOPPA and the CCSD method by calculating NMR spin-spin coupling constants in the backbone structure of free amino acid residues. Based on a small basis set study, the relative performance of the methods was not found to be heavily dependent on the size of the basis set. While HRPA(D) was found to reproduce the SOPPA results to a consistently high degree of accuracy, RPA(D) reproduced the CCSD results for the one-bond coupling constants more accurately than both HRPA(D) and SOPPA.
期刊介绍:
MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published.
The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.