{"title":"In silico Identification and Computational Screening of Potential AFP Inhibitors Against Liver Cancer.","authors":"Hassan Bin Waseem, Muhammad Shakeel, Faiz-Ul Hassan, Asma Yaqoob, Azhar Iqbal, Amina Khalid, Hafiza Nisha Akram, Noshaba Dilbar, Saad Qamar, Rana Adnan Tahir, Sheikh Arslan Sehgal","doi":"10.2174/0115734064330103250106034126","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Liver cancer is considered one of the most common types of cancer and a major cause of ephemerality worldwide having a higher prevalence rate in Asia and sub-Saharan Africa. The alpha-fetoprotein (AFP) is a serum glycoprotein that belongs to a class of oncodevelopmental proteins and is also involved in tumor formation.</p><p><strong>Methods: </strong>In the current effort, a hybrid approach of virtual screening followed by pharmacophore generation and molecular dynamic simulation analyses were performed. The screened top-ranked 10 docked compounds from the selected anti-cancer compound library were utilized to generate the ligand-based pharmacophore. Virtual screening was performed two-dimensional similarity search against the selected natural compound library based on their physicochemical properties. It was observed that all the compounds from the anti-cancer compound library and natural compound library showed similar binding resides.</p><p><strong>Results: </strong>Therefore, the top-ranked screened compounds that showed the least binding energy and highest binding affinity against AFP, obtained through the anti-cancer drug library and natural compound library were reported. The molecular docking analyses revealed that Leu-219, His-222, Lys-242, Lys-246, His-316, Glu-318, Ala-366, Val-367, Gly-475, Ile-479, Ala-471, Asp-478 were observed as potential residues for interaction.</p><p><strong>Conclusion: </strong>The observed results of virtual screening, molecular docking, and MD simulation analyses entail noteworthy observations illustrating that NC002 was a potent inhibitor. The proposed compound NC002 may have potential against liver cancer by targeting AFP based on MD simulation analyses, PCA, and MM-GBSA.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064330103250106034126","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Liver cancer is considered one of the most common types of cancer and a major cause of ephemerality worldwide having a higher prevalence rate in Asia and sub-Saharan Africa. The alpha-fetoprotein (AFP) is a serum glycoprotein that belongs to a class of oncodevelopmental proteins and is also involved in tumor formation.
Methods: In the current effort, a hybrid approach of virtual screening followed by pharmacophore generation and molecular dynamic simulation analyses were performed. The screened top-ranked 10 docked compounds from the selected anti-cancer compound library were utilized to generate the ligand-based pharmacophore. Virtual screening was performed two-dimensional similarity search against the selected natural compound library based on their physicochemical properties. It was observed that all the compounds from the anti-cancer compound library and natural compound library showed similar binding resides.
Results: Therefore, the top-ranked screened compounds that showed the least binding energy and highest binding affinity against AFP, obtained through the anti-cancer drug library and natural compound library were reported. The molecular docking analyses revealed that Leu-219, His-222, Lys-242, Lys-246, His-316, Glu-318, Ala-366, Val-367, Gly-475, Ile-479, Ala-471, Asp-478 were observed as potential residues for interaction.
Conclusion: The observed results of virtual screening, molecular docking, and MD simulation analyses entail noteworthy observations illustrating that NC002 was a potent inhibitor. The proposed compound NC002 may have potential against liver cancer by targeting AFP based on MD simulation analyses, PCA, and MM-GBSA.
期刊介绍:
Aims & Scope
Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.