The Causal Role of Immune Cell Phenotypes and Inflammatory Factors in Childhood Asthma: Evidence From Mendelian Randomization.

IF 2.7 3区 医学 Q1 PEDIATRICS Pediatric Pulmonology Pub Date : 2025-02-01 DOI:10.1002/ppul.27480
Zhoushan Feng, Chunhong Jia, Bin Han, Xiaochun Chen, Jingwen Mei, Shicun Qiao, Xiaohong Wu, Fan Wu
{"title":"The Causal Role of Immune Cell Phenotypes and Inflammatory Factors in Childhood Asthma: Evidence From Mendelian Randomization.","authors":"Zhoushan Feng, Chunhong Jia, Bin Han, Xiaochun Chen, Jingwen Mei, Shicun Qiao, Xiaohong Wu, Fan Wu","doi":"10.1002/ppul.27480","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study utilizes Mendelian randomization (MR) to explore the causal relationship between immune cell phenotypes, inflammatory factors, and childhood asthma, aiming to enhance our understanding and management of the disease.</p><p><strong>Methods: </strong>A two-sample MR approach was used to explore the causal relationships between 731 immune cell phenotypes, 91 inflammatory factors, and childhood asthma. The main analysis was performed using inverse variance weighting (IVW), with additional methods like weighted median, MR-Egger, and weighted mode. Statistical significance was further assessed using false discovery rate (FDR) correction. Sensitivity analyses assessed heterogeneity (Cochran's Q test) and pleiotropy (MR-Egger, MR-PRESSO), while reverse causality was evaluated using the Steiger test. Findings were further validated through cohort studies and meta-analyses to ensure robustness.</p><p><strong>Results: </strong>Among 91 inflammatory factors, DNER, IL-18 R1, and Osteoprotegerin increased childhood asthma risk, while CDCP1 and VEGF-A were protective (p < 0.05). Of 731 immune cell phenotypes, 45 showed significant links to asthma, with protective effects from CD45RA+ CD8+ T cells and HLA-DR+ NK cells, and increased risk from IgD-CD38- B cells and CD8dim T cells (p < 0.05). Specific SSC-A parameters and higher MFI values for CD19, CD28, and CD3 were protective, while elevated MFI for CCR2 on monocytes and CD86 on myeloid dendritic cells increased risk. However, after further FDR correction, no statistically significant results were identified. Nonetheless, sensitivity and replication analyses, including meta-analysis, confirmed the robustness of these associations.</p><p><strong>Conclusions: </strong>This study provides a comprehensive investigation into the complex interplay between immune system dysregulation and childhood asthma. By identifying specific inflammatory factors and immune cell phenotypes linked to asthma risk and protection, the findings offer valuable insights into disease pathogenesis. While these results highlight potential targets for precision-based therapeutic interventions, further research is needed to validate these associations and translate them into clinical applications.</p>","PeriodicalId":19932,"journal":{"name":"Pediatric Pulmonology","volume":"60 2","pages":"e27480"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Pulmonology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ppul.27480","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study utilizes Mendelian randomization (MR) to explore the causal relationship between immune cell phenotypes, inflammatory factors, and childhood asthma, aiming to enhance our understanding and management of the disease.

Methods: A two-sample MR approach was used to explore the causal relationships between 731 immune cell phenotypes, 91 inflammatory factors, and childhood asthma. The main analysis was performed using inverse variance weighting (IVW), with additional methods like weighted median, MR-Egger, and weighted mode. Statistical significance was further assessed using false discovery rate (FDR) correction. Sensitivity analyses assessed heterogeneity (Cochran's Q test) and pleiotropy (MR-Egger, MR-PRESSO), while reverse causality was evaluated using the Steiger test. Findings were further validated through cohort studies and meta-analyses to ensure robustness.

Results: Among 91 inflammatory factors, DNER, IL-18 R1, and Osteoprotegerin increased childhood asthma risk, while CDCP1 and VEGF-A were protective (p < 0.05). Of 731 immune cell phenotypes, 45 showed significant links to asthma, with protective effects from CD45RA+ CD8+ T cells and HLA-DR+ NK cells, and increased risk from IgD-CD38- B cells and CD8dim T cells (p < 0.05). Specific SSC-A parameters and higher MFI values for CD19, CD28, and CD3 were protective, while elevated MFI for CCR2 on monocytes and CD86 on myeloid dendritic cells increased risk. However, after further FDR correction, no statistically significant results were identified. Nonetheless, sensitivity and replication analyses, including meta-analysis, confirmed the robustness of these associations.

Conclusions: This study provides a comprehensive investigation into the complex interplay between immune system dysregulation and childhood asthma. By identifying specific inflammatory factors and immune cell phenotypes linked to asthma risk and protection, the findings offer valuable insights into disease pathogenesis. While these results highlight potential targets for precision-based therapeutic interventions, further research is needed to validate these associations and translate them into clinical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pediatric Pulmonology
Pediatric Pulmonology 医学-呼吸系统
CiteScore
6.00
自引率
12.90%
发文量
468
审稿时长
3-8 weeks
期刊介绍: Pediatric Pulmonology (PPUL) is the foremost global journal studying the respiratory system in disease and in health as it develops from intrauterine life though adolescence to adulthood. Combining explicit and informative analysis of clinical as well as basic scientific research, PPUL provides a look at the many facets of respiratory system disorders in infants and children, ranging from pathological anatomy, developmental issues, and pathophysiology to infectious disease, asthma, cystic fibrosis, and airborne toxins. Focused attention is given to the reporting of diagnostic and therapeutic methods for neonates, preschool children, and adolescents, the enduring effects of childhood respiratory diseases, and newly described infectious diseases. PPUL concentrates on subject matters of crucial interest to specialists preparing for the Pediatric Subspecialty Examinations in the United States and other countries. With its attentive coverage and extensive clinical data, this journal is a principle source for pediatricians in practice and in training and a must have for all pediatric pulmonologists.
期刊最新文献
Efficacy of Elexacaftor/Tezacaftor/Ivacaftor in a Cystic Fibrosis Child With L1077P Mutation. Hamman's Sign and Syndrome: A Reminder of Important Clinical Clues. Impact of Positive Expiratory Pressure Breathing on Gastroesophageal Reflux in Patients With Esophageal Atresia. Implementation of Cystic Fibrosis Responsibility, Independence, Self-Care, Education Program Enhances Cystic Fibrosis Knowledge in Limited Resource Country: Results From a Randomized Controlled Trial. Initial Antibiotic Selection Based on Microbiologic History in Pediatric Cystic Fibrosis-Related Pulmonary Exacerbations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1