Early detection of disease outbreaks and non-outbreaks using incidence data: A framework using feature-based time series classification and machine learning.
Shan Gao, Amit K Chakraborty, Russell Greiner, Mark A Lewis, Hao Wang
{"title":"Early detection of disease outbreaks and non-outbreaks using incidence data: A framework using feature-based time series classification and machine learning.","authors":"Shan Gao, Amit K Chakraborty, Russell Greiner, Mark A Lewis, Hao Wang","doi":"10.1371/journal.pcbi.1012782","DOIUrl":null,"url":null,"abstract":"<p><p>Forecasting the occurrence and absence of novel disease outbreaks is essential for disease management, yet existing methods are often context-specific, require a long preparation time, and non-outbreak prediction remains understudied. To address this gap, we propose a novel framework using a feature-based time series classification (TSC) method to forecast outbreaks and non-outbreaks. We tested our methods on synthetic data from a Susceptible-Infected-Recovered (SIR) model for slowly changing, noisy disease dynamics. Outbreak sequences give a transcritical bifurcation within a specified future time window, whereas non-outbreak (null bifurcation) sequences do not. We identified incipient differences, reflected in 22 statistical features and 5 early warning signal indicators, in time series of infectives leading to future outbreaks and non-outbreaks. Classifier performance, given by the area under the receiver-operating curve (AUC), ranged from 0 . 99 for large expanding windows of training data to 0 . 7 for small rolling windows. The framework is further evaluated on four empirical datasets: COVID-19 incidence data from Singapore, 18 other countries, and Edmonton, Canada, as well as SARS data from Hong Kong, with two classifiers exhibiting consistently high accuracy. Our results highlight detectable statistical features distinguishing outbreak and non-outbreak sequences well before potential occurrence, in both synthetic and real-world datasets presented in this study.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 2","pages":"e1012782"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012782","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Forecasting the occurrence and absence of novel disease outbreaks is essential for disease management, yet existing methods are often context-specific, require a long preparation time, and non-outbreak prediction remains understudied. To address this gap, we propose a novel framework using a feature-based time series classification (TSC) method to forecast outbreaks and non-outbreaks. We tested our methods on synthetic data from a Susceptible-Infected-Recovered (SIR) model for slowly changing, noisy disease dynamics. Outbreak sequences give a transcritical bifurcation within a specified future time window, whereas non-outbreak (null bifurcation) sequences do not. We identified incipient differences, reflected in 22 statistical features and 5 early warning signal indicators, in time series of infectives leading to future outbreaks and non-outbreaks. Classifier performance, given by the area under the receiver-operating curve (AUC), ranged from 0 . 99 for large expanding windows of training data to 0 . 7 for small rolling windows. The framework is further evaluated on four empirical datasets: COVID-19 incidence data from Singapore, 18 other countries, and Edmonton, Canada, as well as SARS data from Hong Kong, with two classifiers exhibiting consistently high accuracy. Our results highlight detectable statistical features distinguishing outbreak and non-outbreak sequences well before potential occurrence, in both synthetic and real-world datasets presented in this study.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.