Xin Li, Jie Liu, Lili He, Mi Tian, Yingying Xu, Bing Peng
{"title":"miR-584-5p Regulates MSMO1 to Modulate the AKT/PI3K Pathway and Inhibit Breast Cancer Progression.","authors":"Xin Li, Jie Liu, Lili He, Mi Tian, Yingying Xu, Bing Peng","doi":"10.2174/0109298665339026250114070523","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Endogenous microRNAs (miRNAs) are critical regulators of tumor progression, making their role in breast cancer an important area of investigation.</p><p><strong>Method: </strong>This study examined the regulation of MSMO1 by miR-584-5p in breast cancer cells. Using bioinformatics and Western blotting, we confirmed MSMO1 expression in breast cancer cells and evaluated its effects on cell migration, invasion, and the AKT signaling pathway. In vivo experiments further supported these findings. The interaction between miR-584-5p and MSMO1 was validated through luciferase reporter assays, while functional studies highlighted the impact of miR-584-5p on cancer progression.</p><p><strong>Result: </strong>Our findings revealed that MSMO1 is upregulated in breast cancer, enhancing cell migration and invasion. Silencing MSMO1 diminished AKT pathway activity, and luciferase assays confirmed MSMO1 as a direct target of miR-584-5p.</p><p><strong>Conclusion: </strong>Overexpression of miR-584-5p suppressed migration and invasion of breast cancer cells. In summary, miR-584-5p is likely to modulate MSMO1 and subsequently regulate the AKT/ PI3K pathway, presenting a promising therapeutic target for breast cancer treatment.</p>","PeriodicalId":20736,"journal":{"name":"Protein and Peptide Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein and Peptide Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0109298665339026250114070523","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Endogenous microRNAs (miRNAs) are critical regulators of tumor progression, making their role in breast cancer an important area of investigation.
Method: This study examined the regulation of MSMO1 by miR-584-5p in breast cancer cells. Using bioinformatics and Western blotting, we confirmed MSMO1 expression in breast cancer cells and evaluated its effects on cell migration, invasion, and the AKT signaling pathway. In vivo experiments further supported these findings. The interaction between miR-584-5p and MSMO1 was validated through luciferase reporter assays, while functional studies highlighted the impact of miR-584-5p on cancer progression.
Result: Our findings revealed that MSMO1 is upregulated in breast cancer, enhancing cell migration and invasion. Silencing MSMO1 diminished AKT pathway activity, and luciferase assays confirmed MSMO1 as a direct target of miR-584-5p.
Conclusion: Overexpression of miR-584-5p suppressed migration and invasion of breast cancer cells. In summary, miR-584-5p is likely to modulate MSMO1 and subsequently regulate the AKT/ PI3K pathway, presenting a promising therapeutic target for breast cancer treatment.
期刊介绍:
Protein & Peptide Letters publishes letters, original research papers, mini-reviews and guest edited issues in all important aspects of protein and peptide research, including structural studies, advances in recombinant expression, function, synthesis, enzymology, immunology, molecular modeling, and drug design. Manuscripts must have a significant element of novelty, timeliness and urgency that merit rapid publication. Reports of crystallization and preliminary structure determination of biologically important proteins are considered only if they include significant new approaches or deal with proteins of immediate importance, and preliminary structure determinations of biologically important proteins. Purely theoretical/review papers should provide new insight into the principles of protein/peptide structure and function. Manuscripts describing computational work should include some experimental data to provide confirmation of the results of calculations.
Protein & Peptide Letters focuses on:
Structure Studies
Advances in Recombinant Expression
Drug Design
Chemical Synthesis
Function
Pharmacology
Enzymology
Conformational Analysis
Immunology
Biotechnology
Protein Engineering
Protein Folding
Sequencing
Molecular Recognition
Purification and Analysis