Seawater intrusion and infiltration modelling coupled to digital tools to avoid high saline concentrations in reclaimed water: application in coastal central Italy.
B Szelag, N Ciuccoli, Josué González-Camejo, C Giansanti, A Kiczko, A L Eusebi, C Palermo, F Fatone
{"title":"Seawater intrusion and infiltration modelling coupled to digital tools to avoid high saline concentrations in reclaimed water: application in coastal central Italy.","authors":"B Szelag, N Ciuccoli, Josué González-Camejo, C Giansanti, A Kiczko, A L Eusebi, C Palermo, F Fatone","doi":"10.2166/wst.2025.012","DOIUrl":null,"url":null,"abstract":"<p><p>Industrial symbiosis approach was established between an industrial company and a water utility to prioritize the reuse of urban wastewater for industrial purposes. This requires low-salinity water, but this area is frequently affected by saline intrusion, thus creating water-related conflicts between the different economic activities. This study proposes a digital solution that combines dynamic simulation model (that predicts seawater intrusion and runoff) with digital tools, i.e., smart equalization (control algorithm) and matchmaking platform (decision support system). The models aim to predict the periods where significant peaks of salinity occurs, whereas the tools aim to distribute the wastewater and reclaimed water streams to diverse applications (industrial, agricultural) and/or treatments (conventional treatment, reverse osmosis) to maximize the amount of wastewater reused in efficient and sustainable way. During the 2D simulated period, wastewater conductivity was in range of 2100-2700 µS·cm<sup>-1</sup>. Although this conductivity was over the limit required for industrial reuse, the digital solution implemented in this study enabled to recover 71% of the total wastewater produced for industrial purposes and 10% for irrigation, only discharging 19% of the total. The approach implemented in this study would be very useful to be replicated in coastal areas where saline intrusion is relevant.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 3","pages":"280-294"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2025.012","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial symbiosis approach was established between an industrial company and a water utility to prioritize the reuse of urban wastewater for industrial purposes. This requires low-salinity water, but this area is frequently affected by saline intrusion, thus creating water-related conflicts between the different economic activities. This study proposes a digital solution that combines dynamic simulation model (that predicts seawater intrusion and runoff) with digital tools, i.e., smart equalization (control algorithm) and matchmaking platform (decision support system). The models aim to predict the periods where significant peaks of salinity occurs, whereas the tools aim to distribute the wastewater and reclaimed water streams to diverse applications (industrial, agricultural) and/or treatments (conventional treatment, reverse osmosis) to maximize the amount of wastewater reused in efficient and sustainable way. During the 2D simulated period, wastewater conductivity was in range of 2100-2700 µS·cm-1. Although this conductivity was over the limit required for industrial reuse, the digital solution implemented in this study enabled to recover 71% of the total wastewater produced for industrial purposes and 10% for irrigation, only discharging 19% of the total. The approach implemented in this study would be very useful to be replicated in coastal areas where saline intrusion is relevant.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.