{"title":"Two pores instead of one: Gating pore current and the electrical leak in autism and epilepsy","authors":"Ahmed Eltokhi , Tamer M. Gamal El-Din","doi":"10.1016/j.pnpbp.2025.111291","DOIUrl":null,"url":null,"abstract":"<div><div>Imagine the brain as a dynamic city, where countless vehicles traverse major arterial roads and branching side streets. The smooth traffic flow depends on a balance between excitatory neurons, which act as main roads encouraging vehicles to move forward, and inhibitory neurons, represented by branching side streets that regulate and control the traffic flow back onto the main route. Both systems work in tandem to maintain efficient operations, preventing gridlock or chaos. Zooming in further, the voltage-gated ion channels within neurons resemble traffic lights on arterial roads or side streets. Green means go, red means stop, and yellow signals caution. These channels regulate the flow of bioelectric signals, coordinating transitions between green, yellow, and red—analogous to an action potential. In excitatory neurons (major roads), voltage-gated sodium channels act as green lights, allowing sodium ions to flow in during depolarization. In contrast, voltage-gated potassium channels serve as yellow lights, eventually signaling red to terminate the action potential. In inhibitory neurons (side streets), sodium influx produces action potentials that ultimately control and limit traffic on the major roads. This analogy can be extended to describe neuropsychiatric and neurological disorders, such as autism spectrum disorder (ASD) and epilepsy, which arise from mutations in voltage-gated ion channels. These mutations alter the channels' ability to open and close properly, disrupting the timing and duration of red, yellow and green signals and impairing traffic flow. Now, picture yourself on a major arterial road with green and red flickering simultaneously. Such a disastrous scenario could lead to even more dangerous outcomes, with cars moving when they should stop or stopping when they should move. This specific analogy illustrates a key feature of certain mutations in voltage-gated ion channels that result in the gating pore current (I<sub>gp</sub>), a secondary pore that leaks electrical current. This mini-review focuses on I<sub>gp</sub> caused by mutations in the gating charge residues of voltage-gated ion channels. We will discuss how I<sub>gp</sub> contributes to the pathophysiology of ASD and epilepsy and explore therapeutic strategies targeting this mechanism.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"137 ","pages":"Article 111291"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584625000454","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Imagine the brain as a dynamic city, where countless vehicles traverse major arterial roads and branching side streets. The smooth traffic flow depends on a balance between excitatory neurons, which act as main roads encouraging vehicles to move forward, and inhibitory neurons, represented by branching side streets that regulate and control the traffic flow back onto the main route. Both systems work in tandem to maintain efficient operations, preventing gridlock or chaos. Zooming in further, the voltage-gated ion channels within neurons resemble traffic lights on arterial roads or side streets. Green means go, red means stop, and yellow signals caution. These channels regulate the flow of bioelectric signals, coordinating transitions between green, yellow, and red—analogous to an action potential. In excitatory neurons (major roads), voltage-gated sodium channels act as green lights, allowing sodium ions to flow in during depolarization. In contrast, voltage-gated potassium channels serve as yellow lights, eventually signaling red to terminate the action potential. In inhibitory neurons (side streets), sodium influx produces action potentials that ultimately control and limit traffic on the major roads. This analogy can be extended to describe neuropsychiatric and neurological disorders, such as autism spectrum disorder (ASD) and epilepsy, which arise from mutations in voltage-gated ion channels. These mutations alter the channels' ability to open and close properly, disrupting the timing and duration of red, yellow and green signals and impairing traffic flow. Now, picture yourself on a major arterial road with green and red flickering simultaneously. Such a disastrous scenario could lead to even more dangerous outcomes, with cars moving when they should stop or stopping when they should move. This specific analogy illustrates a key feature of certain mutations in voltage-gated ion channels that result in the gating pore current (Igp), a secondary pore that leaks electrical current. This mini-review focuses on Igp caused by mutations in the gating charge residues of voltage-gated ion channels. We will discuss how Igp contributes to the pathophysiology of ASD and epilepsy and explore therapeutic strategies targeting this mechanism.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.