circNR3C2 promotes chondrogenic differentiation and cartilage repair of human adipose-derived stem cells via the hsa-miR-647/SOX9 pathway.

Q1 Health Professions Animal models and experimental medicine Pub Date : 2025-02-13 DOI:10.1002/ame2.12561
Dabiao Hou, Huajun Wang, Hao Guo, Dongbin Luo, Xiaofei Zheng, Simin Luo
{"title":"circNR3C2 promotes chondrogenic differentiation and cartilage repair of human adipose-derived stem cells via the hsa-miR-647/SOX9 pathway.","authors":"Dabiao Hou, Huajun Wang, Hao Guo, Dongbin Luo, Xiaofei Zheng, Simin Luo","doi":"10.1002/ame2.12561","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Human adipose-derived stem cells (hADSCs) are seed cells with application prospects in cartilage repair. However, the mechanism of hADSC chondrogenic differentiation is still unclear. This study identifies a novel circRNA, circNR3C2, which is significantly upregulated during the chondrogenic differentiation of hADSCs.</p><p><strong>Methods: </strong>To analyze their role in hADSC chondrogenic differentiation, hADSCs were separated and identified by flow cytometry. Thereafter, we conducted Alcian Blue staining to assess chondrogenic differentiation levels. Additionally, RT-qPCR was carried out to detect levels of the cartilage-related genes COL2, Aggrecan and SOX9. Moreover, overlapping target SOX9 and circNR3C2 miRNAs were detected by bioinformatics and luciferase analyses. Finally, the role of circNR3C2 was confirmed in vivo using animal models.</p><p><strong>Results: </strong>We confirmed that the cell surface receptors CD44, CD90 and CD105 were positively expressed on hADSCs, and their cartilage differentiation levels dramatically increased after 2 weeks. Expression of the cartilage-related genes COL2 and Aggrecan and circNR3C2 also markedly increased. CircNR3C2 overexpression enhanced cartilage differentiation of hADSCs, while up-regulating COL2, SOX9 and Aggrecan. Bioinformatics analysis identified hsa-miR-647 as the target miRNA of circNR3C2 and SOX9. Hsa-miR-647 overexpression in hADSCs can antagonize the effect of circNR3C2 on chondrogenic differentiation, and reverse its effect on regulating the expression of COL2, Aggrecan, and SOX9. We also showed that hADSCs overexpressing circNR3C2 promote cartilage repair in vivo.</p><p><strong>Conclusions: </strong>We show that circNR3C2 modulates SOX9 expression to promote hsa-miR-647-mediated hADSC chondrogenic differentiation; targeting circNR3C2 may help to develop new treatments to manage cartilage-related disorders.</p>","PeriodicalId":93869,"journal":{"name":"Animal models and experimental medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal models and experimental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ame2.12561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Human adipose-derived stem cells (hADSCs) are seed cells with application prospects in cartilage repair. However, the mechanism of hADSC chondrogenic differentiation is still unclear. This study identifies a novel circRNA, circNR3C2, which is significantly upregulated during the chondrogenic differentiation of hADSCs.

Methods: To analyze their role in hADSC chondrogenic differentiation, hADSCs were separated and identified by flow cytometry. Thereafter, we conducted Alcian Blue staining to assess chondrogenic differentiation levels. Additionally, RT-qPCR was carried out to detect levels of the cartilage-related genes COL2, Aggrecan and SOX9. Moreover, overlapping target SOX9 and circNR3C2 miRNAs were detected by bioinformatics and luciferase analyses. Finally, the role of circNR3C2 was confirmed in vivo using animal models.

Results: We confirmed that the cell surface receptors CD44, CD90 and CD105 were positively expressed on hADSCs, and their cartilage differentiation levels dramatically increased after 2 weeks. Expression of the cartilage-related genes COL2 and Aggrecan and circNR3C2 also markedly increased. CircNR3C2 overexpression enhanced cartilage differentiation of hADSCs, while up-regulating COL2, SOX9 and Aggrecan. Bioinformatics analysis identified hsa-miR-647 as the target miRNA of circNR3C2 and SOX9. Hsa-miR-647 overexpression in hADSCs can antagonize the effect of circNR3C2 on chondrogenic differentiation, and reverse its effect on regulating the expression of COL2, Aggrecan, and SOX9. We also showed that hADSCs overexpressing circNR3C2 promote cartilage repair in vivo.

Conclusions: We show that circNR3C2 modulates SOX9 expression to promote hsa-miR-647-mediated hADSC chondrogenic differentiation; targeting circNR3C2 may help to develop new treatments to manage cartilage-related disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Astaxanthin ameliorates benzalkonium chloride-induced dry eye disease through suppressing inflammation and oxidative stress via Keap1-Nrf2/HO-1 signaling pathways. Cover Picture Issue Information Development of a single-nucleotide polymorphism panel genotyping system for genetic analysis of Chinese hamsters. The protective effects of melatonin against electromagnetic waves of cell phones in animal models: A systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1