Application of silk fibroin-based composite films in biomedicine and biotechnology.

Ke Ma, Zhi-Feng Wu, Ke-Zheng Chen, Sheng-Lin Qiao
{"title":"Application of silk fibroin-based composite films in biomedicine and biotechnology.","authors":"Ke Ma, Zhi-Feng Wu, Ke-Zheng Chen, Sheng-Lin Qiao","doi":"10.1039/d4tb02616k","DOIUrl":null,"url":null,"abstract":"<p><p>Silk fibroin has garnered significant attention as a natural biomaterial due to its exceptional biocompatibility, tunable water solubility, optical transparency and high thermal stability. In recent years, silk fibroin films have gained prominence for their ease of fabrication and unique properties. However, their intrinsic brittleness limits broader applicability in certain fields. To overcome this challenge, researchers have developed various strategies, including physical blending, chemical modification, and genetic engineering, to improve key attributes such as mechanical strength, antimicrobial activity, and electrical conductivity. These advancements have significantly broadened the utility of silk fibroin films in diverse biomedical applications. This review provides an in-depth analysis of recent progress in silk fibroin-based composite films, emphasizing their applications in bone regeneration, wound healing, and health monitoring. Modified silk fibroin composites are highlighted for their superior material properties and enhanced functional potential in these domains. Additionally, this review discusses future research directions, offering valuable insights into pathways for further innovation and practical implementation. With continued advancements, silk fibroin composite films are poised to make transformative contributions to the fields of biomedicine and biotechnology.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb02616k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Silk fibroin has garnered significant attention as a natural biomaterial due to its exceptional biocompatibility, tunable water solubility, optical transparency and high thermal stability. In recent years, silk fibroin films have gained prominence for their ease of fabrication and unique properties. However, their intrinsic brittleness limits broader applicability in certain fields. To overcome this challenge, researchers have developed various strategies, including physical blending, chemical modification, and genetic engineering, to improve key attributes such as mechanical strength, antimicrobial activity, and electrical conductivity. These advancements have significantly broadened the utility of silk fibroin films in diverse biomedical applications. This review provides an in-depth analysis of recent progress in silk fibroin-based composite films, emphasizing their applications in bone regeneration, wound healing, and health monitoring. Modified silk fibroin composites are highlighted for their superior material properties and enhanced functional potential in these domains. Additionally, this review discusses future research directions, offering valuable insights into pathways for further innovation and practical implementation. With continued advancements, silk fibroin composite films are poised to make transformative contributions to the fields of biomedicine and biotechnology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
期刊最新文献
Innovative dual-contrast nanocoating for central venous catheters: prolonged infection resistance and enhanced imaging. Evaluation of a chitosan/polyvinyl alcohol hydrogel loaded with graphene oxide and nano TiO2 for bone defect reconstruction in a dog model. Heterogeneous biocatalysis by magnetic nanoparticle immobilized biomass-degrading enzymes derived from microbial cultures. Application of silk fibroin-based composite films in biomedicine and biotechnology. NAD+ modulation with nicotinamide mononucleotide coated 3D printed microneedle implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1