Boyang Sun, Haiyu Wu, Tianrui Fang, Zihan Wang, Ke Xu, Huiqi Yan, Jinbo Cao, Ying Wang, Li Wang
{"title":"Dual-Mode Colorimetric/SERS Lateral Flow Immunoassay with Machine Learning-Driven Optimization for Ultrasensitive Mycotoxin Detection.","authors":"Boyang Sun, Haiyu Wu, Tianrui Fang, Zihan Wang, Ke Xu, Huiqi Yan, Jinbo Cao, Ying Wang, Li Wang","doi":"10.1021/acs.analchem.4c06582","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting and quantifying mycotoxins using LFIA are challenging due to the need for high sensitivity and accuracy. To address this, a dual-mode colorimetric-SERS LFIA was developed for detecting deoxynivalenol (DON). Rhodium nanocores provided strong plasmonic properties as the SERS substrate, while silver nanoparticles created electromagnetic \"hotspots\" to enhance signal sensitivity. Finite element modeling optimized the electromagnetic field intensity, and Prussian blue generated a distinct signal at 2156 cm<sup>-1</sup>, effectively reducing background interference. This dual-mode LFIA achieved a detection limit of 4.21 pg/mL, 37 times lower than that of colloidal gold-based LFIA (0.156 ng/mL). Machine learning algorithms, including ANN and KNN, enabled precise classification and quantification of contamination, achieving 98.8% classification accuracy and an MSE of 0.57. These results underscore the platform's potential for analyzing harmful substances in complex matrices and demonstrate the important role of machine learning-enhanced nanosensors in advancing detection technologies.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":" ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06582","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting and quantifying mycotoxins using LFIA are challenging due to the need for high sensitivity and accuracy. To address this, a dual-mode colorimetric-SERS LFIA was developed for detecting deoxynivalenol (DON). Rhodium nanocores provided strong plasmonic properties as the SERS substrate, while silver nanoparticles created electromagnetic "hotspots" to enhance signal sensitivity. Finite element modeling optimized the electromagnetic field intensity, and Prussian blue generated a distinct signal at 2156 cm-1, effectively reducing background interference. This dual-mode LFIA achieved a detection limit of 4.21 pg/mL, 37 times lower than that of colloidal gold-based LFIA (0.156 ng/mL). Machine learning algorithms, including ANN and KNN, enabled precise classification and quantification of contamination, achieving 98.8% classification accuracy and an MSE of 0.57. These results underscore the platform's potential for analyzing harmful substances in complex matrices and demonstrate the important role of machine learning-enhanced nanosensors in advancing detection technologies.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.