Transformer-Based Models for Predicting Molecular Structures from Infrared Spectra Using Patch-Based Self-Attention.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2025-02-14 DOI:10.1021/acs.jpca.4c05665
Wenjin Wu, Aleš Leonardis, Jianbo Jiao, Jun Jiang, Linjiang Chen
{"title":"Transformer-Based Models for Predicting Molecular Structures from Infrared Spectra Using Patch-Based Self-Attention.","authors":"Wenjin Wu, Aleš Leonardis, Jianbo Jiao, Jun Jiang, Linjiang Chen","doi":"10.1021/acs.jpca.4c05665","DOIUrl":null,"url":null,"abstract":"<p><p>Infrared (IR) spectroscopy, a type of vibrational spectroscopy, provides extensive molecular structure details and is a highly effective technique for chemists to determine molecular structures. However, analyzing experimental spectra has always been challenging due to the specialized knowledge required and the variability of spectra under different experimental conditions. Here, we propose a transformer-based model with a patch-based self-attention spectrum embedding layer, designed to prevent the loss of spectral information while maintaining simplicity and effectiveness. To further enhance the model's understanding of IR spectra, we introduce a data augmentation approach, which selectively introduces vertical noise only at absorption peaks. Our approach not only achieves state-of-the-art performance on simulated data sets but also attains a top-1 accuracy of 55% on real experimental spectra, surpassing the previous state-of-the-art by approximately 10%. Additionally, our model demonstrates proficiency in analyzing intricate and variable fingerprint regions, effectively extracting critical structural information.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c05665","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Infrared (IR) spectroscopy, a type of vibrational spectroscopy, provides extensive molecular structure details and is a highly effective technique for chemists to determine molecular structures. However, analyzing experimental spectra has always been challenging due to the specialized knowledge required and the variability of spectra under different experimental conditions. Here, we propose a transformer-based model with a patch-based self-attention spectrum embedding layer, designed to prevent the loss of spectral information while maintaining simplicity and effectiveness. To further enhance the model's understanding of IR spectra, we introduce a data augmentation approach, which selectively introduces vertical noise only at absorption peaks. Our approach not only achieves state-of-the-art performance on simulated data sets but also attains a top-1 accuracy of 55% on real experimental spectra, surpassing the previous state-of-the-art by approximately 10%. Additionally, our model demonstrates proficiency in analyzing intricate and variable fingerprint regions, effectively extracting critical structural information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Experimental Confirmation of van der Waals-Enhanced Growth of Sulfuric Acid/Water Nanoparticles. Influence of Water on the NO3 + HO2 Reaction. Interplays between Functional Groups and Substitution Sites Modulate the Photophysics of the Bithiophenes. Machine Learning Study of Methane Activation by Gas-Phase Species. Test of the Orbital-Based LI3 Index as a Predictor of the Height of the 3MLCT →3MC Transition-State Barrier for [Ru(NN)3]2+ Polypyridine Complexes in CH3CN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1