Igju Jeon, Woosong Jeong, Changmin Ahn, Jungwon Kim
{"title":"10<sup>-15</sup>-level laser stabilization down to fiber thermal noise limit using self-homodyne detection.","authors":"Igju Jeon, Woosong Jeong, Changmin Ahn, Jungwon Kim","doi":"10.1364/OL.541281","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate a self-homodyne detection method to stabilize a continuous-wave 1550-nm laser to a 1-km optical fiber delay line, achieving a frequency instability of 6.3 × 10<sup>-15</sup> at a 16-ms averaging time. This result, limited by fiber thermal noise, is achieved without the need for a vacuum system, highlighting the potential of our approach for ultra-stable laser systems in non-laboratory environments. The system utilizes only a few passive fiber optic components and a single balanced photodetector, significantly simplifying the laser stabilization process while maintaining high performance. The entire optical setup is compactly packaged in a portable metal air-tight case.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 4","pages":"1057-1060"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.541281","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate a self-homodyne detection method to stabilize a continuous-wave 1550-nm laser to a 1-km optical fiber delay line, achieving a frequency instability of 6.3 × 10-15 at a 16-ms averaging time. This result, limited by fiber thermal noise, is achieved without the need for a vacuum system, highlighting the potential of our approach for ultra-stable laser systems in non-laboratory environments. The system utilizes only a few passive fiber optic components and a single balanced photodetector, significantly simplifying the laser stabilization process while maintaining high performance. The entire optical setup is compactly packaged in a portable metal air-tight case.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.