Atomistic modelling of crystal structures of Friedel's salts Ca2Al(OH)6(Cl,CO3,OH)·mH2O: Its relation to chloride binding

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Cement and Concrete Research Pub Date : 2025-02-14 DOI:10.1016/j.cemconres.2025.107821
Liming Huang , Erik Bialik , Arezou Babaahmadi
{"title":"Atomistic modelling of crystal structures of Friedel's salts Ca2Al(OH)6(Cl,CO3,OH)·mH2O: Its relation to chloride binding","authors":"Liming Huang ,&nbsp;Erik Bialik ,&nbsp;Arezou Babaahmadi","doi":"10.1016/j.cemconres.2025.107821","DOIUrl":null,"url":null,"abstract":"<div><div>The diffusion of chloride critically affects the durability of reinforced concrete in exposure environments. Hydrocalumite-like (AFm) phases can bind chlorides to form Friedel's salts, retarding chloride ingress. However, the stability and structural parameters of Friedel's salts with mixed-anion interlayers are not fully understood. First principles computation was performed to provide the energy-minimum crystal structures for Friedel's salt and AFm phases with various substitutions and water contents. It shows that the mixing of Cl<sup>−</sup> and OH<sup>−</sup> significantly changes the lattice parameters. However, the mixing of 1/2CO<sub>3</sub><sup>2−</sup> and Cl<sup>−</sup> anion presents little effect on structural parameter. It is energetically favourable and hardly measurable by XRD but decreases chloride binding capacity. The interlayer hydroxide ions show considerable flexibility in terms of occupied sites, which may be a key factor for the stability of AFm phases. The modelling results align with the the structural changes of Friedel's salts reported in previous experiments.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"191 ","pages":"Article 107821"},"PeriodicalIF":10.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625000407","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The diffusion of chloride critically affects the durability of reinforced concrete in exposure environments. Hydrocalumite-like (AFm) phases can bind chlorides to form Friedel's salts, retarding chloride ingress. However, the stability and structural parameters of Friedel's salts with mixed-anion interlayers are not fully understood. First principles computation was performed to provide the energy-minimum crystal structures for Friedel's salt and AFm phases with various substitutions and water contents. It shows that the mixing of Cl and OH significantly changes the lattice parameters. However, the mixing of 1/2CO32− and Cl anion presents little effect on structural parameter. It is energetically favourable and hardly measurable by XRD but decreases chloride binding capacity. The interlayer hydroxide ions show considerable flexibility in terms of occupied sites, which may be a key factor for the stability of AFm phases. The modelling results align with the the structural changes of Friedel's salts reported in previous experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
期刊最新文献
Quantification of nano-crystalline C-S-H in hydrated tricalcium silicate, Portland cement and fly ash cement using PONKCS method Editorial Board Nonlinear creep of concrete: Stress-activated stick–slip transition of viscous interfaces and microcracking-induced damage Atomistic modelling of crystal structures of Friedel's salts Ca2Al(OH)6(Cl,CO3,OH)·mH2O: Its relation to chloride binding New insights into the improvement of volume stability: Plant polyphenol modified calcium silicate hydrate (C-S-H)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1