Laura B. Vedovato, Luiz E. O. C. Aragão, Danilo R. A. Almeida, David C. Bartholomew, Mauro Assis, Ricardo Dalagnol, Eric B. Gorgens, Celso H. L. Silva‐Junior, Jean P. Ometto, Aline Pontes‐Lopes, Carlos A. Silva, Ruben Valbuena, Ted R. Feldpausch
{"title":"Impacts of fire on canopy structure and its resilience depend on successional stage in Amazonian secondary forests","authors":"Laura B. Vedovato, Luiz E. O. C. Aragão, Danilo R. A. Almeida, David C. Bartholomew, Mauro Assis, Ricardo Dalagnol, Eric B. Gorgens, Celso H. L. Silva‐Junior, Jean P. Ometto, Aline Pontes‐Lopes, Carlos A. Silva, Ruben Valbuena, Ted R. Feldpausch","doi":"10.1002/rse2.431","DOIUrl":null,"url":null,"abstract":"Secondary forests in the Amazon are important carbon sinks, biodiversity reservoirs, and connections between forest fragments. However, their regrowth is highly threatened by fire. Using airborne laser scanning (ALS), surveyed between 2016 and 2018, we analyzed canopy metrics in burned (fires occurred between 2001 and 2018) and unburned secondary forests across different successional stages and their ability to recover after fire. We assessed maximum and mean canopy height, openness at 5 and 10 m, canopy roughness, leaf area index (LAI) and leaf area height volume (LAHV) for 20 sites across South‐East Amazonia (ranging from 375 to 1200 ha). Compared to unburned forests, burned forests had reductions in canopy height, LAI, and LAHV, and increases in openness and roughness. These effects were more pronounced in early successional (ES) than later successional (LS) stages, for example, mean canopy height decreased 33% in ES and 14% in LS and LAI decreased 36% in ES and 18% in LS. Forests in ES stages were less resistant to fire, but more resilient (capable of recovering from a disturbance) in their post‐fire regrowth than LS stage forests. Data extrapolation from our models suggests that canopy structure partially recovers with time since fire for six out of seven canopy metrics; however, LAI and LAHV in LS forests may never fully recover. Our results indicate that successional stage‐specific management and policies that mitigate against fire in early secondary forests should be implemented to increase the success of forest regeneration. Mitigation of fires is critical if secondary forests are to continue to provide their wide array of ecological services.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"34 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.431","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Secondary forests in the Amazon are important carbon sinks, biodiversity reservoirs, and connections between forest fragments. However, their regrowth is highly threatened by fire. Using airborne laser scanning (ALS), surveyed between 2016 and 2018, we analyzed canopy metrics in burned (fires occurred between 2001 and 2018) and unburned secondary forests across different successional stages and their ability to recover after fire. We assessed maximum and mean canopy height, openness at 5 and 10 m, canopy roughness, leaf area index (LAI) and leaf area height volume (LAHV) for 20 sites across South‐East Amazonia (ranging from 375 to 1200 ha). Compared to unburned forests, burned forests had reductions in canopy height, LAI, and LAHV, and increases in openness and roughness. These effects were more pronounced in early successional (ES) than later successional (LS) stages, for example, mean canopy height decreased 33% in ES and 14% in LS and LAI decreased 36% in ES and 18% in LS. Forests in ES stages were less resistant to fire, but more resilient (capable of recovering from a disturbance) in their post‐fire regrowth than LS stage forests. Data extrapolation from our models suggests that canopy structure partially recovers with time since fire for six out of seven canopy metrics; however, LAI and LAHV in LS forests may never fully recover. Our results indicate that successional stage‐specific management and policies that mitigate against fire in early secondary forests should be implemented to increase the success of forest regeneration. Mitigation of fires is critical if secondary forests are to continue to provide their wide array of ecological services.
期刊介绍:
emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students.
Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.