Atomevo-odor: A database for understanding olfactory receptor-odorant pairs with multi-artificial intelligence methods

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Food Chemistry Pub Date : 2025-02-14 DOI:10.1016/j.foodchem.2025.143392
Heng-Yun Zhao , Si-Min Xu , Si-Nuo Xie , Wan-Lin Ye , Jian Li , Lang-Hong Wang , Shi-Lin Cao , Jun-Hu Cheng , Xin-An Zeng , Ji Ma
{"title":"Atomevo-odor: A database for understanding olfactory receptor-odorant pairs with multi-artificial intelligence methods","authors":"Heng-Yun Zhao ,&nbsp;Si-Min Xu ,&nbsp;Si-Nuo Xie ,&nbsp;Wan-Lin Ye ,&nbsp;Jian Li ,&nbsp;Lang-Hong Wang ,&nbsp;Shi-Lin Cao ,&nbsp;Jun-Hu Cheng ,&nbsp;Xin-An Zeng ,&nbsp;Ji Ma","doi":"10.1016/j.foodchem.2025.143392","DOIUrl":null,"url":null,"abstract":"<div><div>Interactions between olfactory receptors (ORs) and specific odorant molecules encode many distinct odors through intricate activation patterns. In this study, in order to enhance our understanding of olfactory perception, Atomevo-Odor (<span><span>http://cslodordatabase.7fx.cn/</span><svg><path></path></svg></span>), a comprehensive database for odorants, ORs, and high-quality OR-odorant responses combining experimental data and artificial intelligence prediction, was constructed. Moreover, graph theory and unsupervised learning methods were employed to classify the odorants, and the relationship between odorant functional groups and fragrance types was examined, along with the recognition mechanism of ORs for different odorant functional groups. Furthermore, a CNN-based model was developed for the OR-odorant response prediction. Finally, predictions of unseen data facilitated the identification of potentially responsive OR-odorant pairs, which allowed for further analysis of the response and recognition mechanisms of odorants by ORs. This study provides valuable insights into the design and guidance for subsequent experiments.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"476 ","pages":"Article 143392"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625006430","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Interactions between olfactory receptors (ORs) and specific odorant molecules encode many distinct odors through intricate activation patterns. In this study, in order to enhance our understanding of olfactory perception, Atomevo-Odor (http://cslodordatabase.7fx.cn/), a comprehensive database for odorants, ORs, and high-quality OR-odorant responses combining experimental data and artificial intelligence prediction, was constructed. Moreover, graph theory and unsupervised learning methods were employed to classify the odorants, and the relationship between odorant functional groups and fragrance types was examined, along with the recognition mechanism of ORs for different odorant functional groups. Furthermore, a CNN-based model was developed for the OR-odorant response prediction. Finally, predictions of unseen data facilitated the identification of potentially responsive OR-odorant pairs, which allowed for further analysis of the response and recognition mechanisms of odorants by ORs. This study provides valuable insights into the design and guidance for subsequent experiments.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嗅觉受体(OR)与特定气味分子之间的相互作用通过错综复杂的激活模式编码出许多不同的气味。在这项研究中,为了加深我们对嗅觉感知的理解,结合实验数据和人工智能预测,构建了一个包含气味剂、嗅觉受体和高质量嗅觉受体-气味剂反应的综合数据库 Atomevo-Odor(http://cslodordatabase.7fx.cn/)。此外,还采用图论和无监督学习方法对气味进行分类,并研究了气味官能团与香味类型之间的关系,以及不同气味官能团对 OR 的识别机制。此外,还开发了一个基于 CNN 的模型,用于预测 OR-臭味反应。最后,对未见数据的预测有助于识别潜在的 OR-odorant 反应对,从而进一步分析 OR 对气味的反应和识别机制。这项研究为后续实验的设计和指导提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
期刊最新文献
Sustainable nanofiber films based on polylactic acid/modified cellulose nanocrystals containing various types of polyphenols, exhibiting antioxidant activity and high stability Alkaline-heat induced the conformationally flexible regions of soy protein and their effect on subunit aggregation Editorial Board Molecularly imprinted Fe3O4 nanoparticles-based magnetic 3D photonic crystal microspheres for specific adsorption of aflatoxin B1 in grains Machine learning-assisted Fourier transform infrared spectroscopy to predict adulteration in coriander powder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1