Hamideh Hassani, Eric Bousquet, Xu He, Bart Partoens, Philippe Ghosez
{"title":"The anti-distortive polaron as an alternative mechanism for lattice-mediated charge trapping","authors":"Hamideh Hassani, Eric Bousquet, Xu He, Bart Partoens, Philippe Ghosez","doi":"10.1038/s41467-025-56791-0","DOIUrl":null,"url":null,"abstract":"<p>Polarons can naturally form in materials from the interaction of extra charge carriers with the atomic lattice. Ubiquitous, they are central to various phenomena such as high-T<sub><i>c</i></sub> superconductivity, electrochromism, photovoltaics, photocatalysis or ion batteries. However, polaron formation remains poorly understood and mostly relies on historical models such as Landau–Pekar, Fröhlich, Holstein or Jahn–Teller polarons. Here, from advanced first-principles calculations, we show that the formation of intriguing medium-sized polarons in WO<sub>3</sub> does not fit with traditional models but instead arises from the local undoing of distortive atomic motions inherent to the pristine phase, which lowers the bandgap through dynamical covalency effects and drives charge trapping. We introduce the concept of the anti-distortive polaron and rationalize it from a quantum-dot model. We demonstrate that anti-distortive polarons are generic to different families of compounds and clarify how this new concept opens concrete perspectives for a better control of the polaronic state and related properties.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56791-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Polarons can naturally form in materials from the interaction of extra charge carriers with the atomic lattice. Ubiquitous, they are central to various phenomena such as high-Tc superconductivity, electrochromism, photovoltaics, photocatalysis or ion batteries. However, polaron formation remains poorly understood and mostly relies on historical models such as Landau–Pekar, Fröhlich, Holstein or Jahn–Teller polarons. Here, from advanced first-principles calculations, we show that the formation of intriguing medium-sized polarons in WO3 does not fit with traditional models but instead arises from the local undoing of distortive atomic motions inherent to the pristine phase, which lowers the bandgap through dynamical covalency effects and drives charge trapping. We introduce the concept of the anti-distortive polaron and rationalize it from a quantum-dot model. We demonstrate that anti-distortive polarons are generic to different families of compounds and clarify how this new concept opens concrete perspectives for a better control of the polaronic state and related properties.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.