{"title":"Construction of electron-rich nickel single atom catalyst by heteroatom doping for enhanced CO2 electroreduction","authors":"Jiale Sun, Kaiqi Li, Zhen Liu, Junwei Xu, Ping Gao, Meng Wang, Yifei Li, Rilong Zhu, Ivan P. Parkin, Zhongyuan Huang","doi":"10.1016/j.jcat.2025.116020","DOIUrl":null,"url":null,"abstract":"Adjustment of electron distribution by heteroatom doping has emerged as a promising strategy to improve the electrochemical CO<sub>2</sub> reduction (ECR) performance of nickel single atom catalysts. Herein, density functional theory calculation (DFT) verifies that the doping of phosphorus atoms in the first shell regulates the valence state of the nickel centre and facilitates higher electron density in the outer shell, which is beneficial to intermediate adsorption, electron transfer and the decrease of reaction energy barrier, resulting in outstanding ECR performance. Guided by the theoretical calculation results, the asymmetrical nickel single atom catalyst doped with phosphorus atom was successfully fabricated by phytic acid modification and calcination treatment. X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy prove that the valence state of nickel exhibits a negative shift and makes them electron-rich after doping phosphorus atom, which is consistent with DFT results. Such catalyst displays superior ECR performance with CO faradaic efficiency above 90 % at a wide potential range and a high CO partial current density of −244.1 mA cm<sup>−2</sup> at −1.0 V in flow cell. The asymmetric electron regulation strategy can be potentially applied to the other transition metal single atoms to enhance their catalytic performance.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"11 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcat.2025.116020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adjustment of electron distribution by heteroatom doping has emerged as a promising strategy to improve the electrochemical CO2 reduction (ECR) performance of nickel single atom catalysts. Herein, density functional theory calculation (DFT) verifies that the doping of phosphorus atoms in the first shell regulates the valence state of the nickel centre and facilitates higher electron density in the outer shell, which is beneficial to intermediate adsorption, electron transfer and the decrease of reaction energy barrier, resulting in outstanding ECR performance. Guided by the theoretical calculation results, the asymmetrical nickel single atom catalyst doped with phosphorus atom was successfully fabricated by phytic acid modification and calcination treatment. X-ray photoelectron spectroscopy and X-ray absorption fine structure spectroscopy prove that the valence state of nickel exhibits a negative shift and makes them electron-rich after doping phosphorus atom, which is consistent with DFT results. Such catalyst displays superior ECR performance with CO faradaic efficiency above 90 % at a wide potential range and a high CO partial current density of −244.1 mA cm−2 at −1.0 V in flow cell. The asymmetric electron regulation strategy can be potentially applied to the other transition metal single atoms to enhance their catalytic performance.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.