Ming Li , Pengcheng Xu , Junjie Hu , Zeyu Tang , Guang Yang
{"title":"From challenges and pitfalls to recommendations and opportunities: Implementing federated learning in healthcare","authors":"Ming Li , Pengcheng Xu , Junjie Hu , Zeyu Tang , Guang Yang","doi":"10.1016/j.media.2025.103497","DOIUrl":null,"url":null,"abstract":"<div><div>Federated learning holds great potential for enabling large-scale healthcare research and collaboration across multiple centers while ensuring data privacy and security are not compromised. Although numerous recent studies suggest or utilize federated learning based methods in healthcare, it remains unclear which ones have potential clinical utility. This review paper considers and analyzes the most recent studies up to May 2024 that describe federated learning based methods in healthcare. After a thorough review, we find that the vast majority are not appropriate for clinical use due to their methodological flaws and/or underlying biases which include but are not limited to privacy concerns, generalization issues, and communication costs. As a result, the effectiveness of federated learning in healthcare is significantly compromised. To overcome these challenges, we provide recommendations and promising opportunities that might be implemented to resolve these problems and improve the quality of model development in federated learning with healthcare.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"101 ","pages":"Article 103497"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525000453","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Federated learning holds great potential for enabling large-scale healthcare research and collaboration across multiple centers while ensuring data privacy and security are not compromised. Although numerous recent studies suggest or utilize federated learning based methods in healthcare, it remains unclear which ones have potential clinical utility. This review paper considers and analyzes the most recent studies up to May 2024 that describe federated learning based methods in healthcare. After a thorough review, we find that the vast majority are not appropriate for clinical use due to their methodological flaws and/or underlying biases which include but are not limited to privacy concerns, generalization issues, and communication costs. As a result, the effectiveness of federated learning in healthcare is significantly compromised. To overcome these challenges, we provide recommendations and promising opportunities that might be implemented to resolve these problems and improve the quality of model development in federated learning with healthcare.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.