Computing skeleton-based handle/tunnel loops

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computers & Graphics-Uk Pub Date : 2025-02-12 DOI:10.1016/j.cag.2025.104177
Hayam Abdelrahman, Yiying Tong
{"title":"Computing skeleton-based handle/tunnel loops","authors":"Hayam Abdelrahman,&nbsp;Yiying Tong","doi":"10.1016/j.cag.2025.104177","DOIUrl":null,"url":null,"abstract":"<div><div>Finding surface loops around narrow sections of a surface is widely used as a prepossessing step in various applications such as segmentation, shape analysis, path planning, and robotics. A common approach to locating such loops is based on surface topology. However, such geodesic loops also exist on topologically trivial genus-0 surfaces, where all such loops can continuously deform to a point. While a few existing 3D geometry-aware topological approaches may succeed in detecting such additional narrow loops, their construction can be cumbersome. To extend beyond the limitations of topologically nontrivial independent loops while remaining efficient, we propose a novel approach that leverages the shape’s skeleton for computing surface loops of handle or tunnel type. Given a closed surface mesh, our algorithm produces a practically comprehensive set of loops encircling narrow regions of the volume inside or outside the surface. Notably, our approach streamlines and expedites computations by accepting a skeleton, a 1D representation of the shape, as part of the input. Specifically, handle-type loops are discovered by examining a small subset of the skeleton points as candidate loop centers, while tunnel-type loops are identified by examining only the high-valence skeleton points.</div></div>","PeriodicalId":50628,"journal":{"name":"Computers & Graphics-Uk","volume":"127 ","pages":"Article 104177"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Graphics-Uk","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097849325000160","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Finding surface loops around narrow sections of a surface is widely used as a prepossessing step in various applications such as segmentation, shape analysis, path planning, and robotics. A common approach to locating such loops is based on surface topology. However, such geodesic loops also exist on topologically trivial genus-0 surfaces, where all such loops can continuously deform to a point. While a few existing 3D geometry-aware topological approaches may succeed in detecting such additional narrow loops, their construction can be cumbersome. To extend beyond the limitations of topologically nontrivial independent loops while remaining efficient, we propose a novel approach that leverages the shape’s skeleton for computing surface loops of handle or tunnel type. Given a closed surface mesh, our algorithm produces a practically comprehensive set of loops encircling narrow regions of the volume inside or outside the surface. Notably, our approach streamlines and expedites computations by accepting a skeleton, a 1D representation of the shape, as part of the input. Specifically, handle-type loops are discovered by examining a small subset of the skeleton points as candidate loop centers, while tunnel-type loops are identified by examining only the high-valence skeleton points.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Graphics-Uk
Computers & Graphics-Uk 工程技术-计算机:软件工程
CiteScore
5.30
自引率
12.00%
发文量
173
审稿时长
38 days
期刊介绍: Computers & Graphics is dedicated to disseminate information on research and applications of computer graphics (CG) techniques. The journal encourages articles on: 1. Research and applications of interactive computer graphics. We are particularly interested in novel interaction techniques and applications of CG to problem domains. 2. State-of-the-art papers on late-breaking, cutting-edge research on CG. 3. Information on innovative uses of graphics principles and technologies. 4. Tutorial papers on both teaching CG principles and innovative uses of CG in education.
期刊最新文献
Bi-Scale density-plot enhancement based on variance-aware filter Computing skeleton-based handle/tunnel loops No-reference geometry quality assessment for colorless point clouds via list-wise rank learning Spatial Augmented Reality for Heavy Machinery Using Laser Projections Foreword to the special section on graphics interface 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1