A nitrogen-rich conjugated covalent organic framework enabling effective iodine adsorption

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Solid State Chemistry Pub Date : 2025-02-13 DOI:10.1016/j.jssc.2025.125258
Yunchao Ma , Shengnan Qi , Yuxin Yao , Chuanxue You , Yue Zhou , Chunbo Liu , Baixiang Ren
{"title":"A nitrogen-rich conjugated covalent organic framework enabling effective iodine adsorption","authors":"Yunchao Ma ,&nbsp;Shengnan Qi ,&nbsp;Yuxin Yao ,&nbsp;Chuanxue You ,&nbsp;Yue Zhou ,&nbsp;Chunbo Liu ,&nbsp;Baixiang Ren","doi":"10.1016/j.jssc.2025.125258","DOIUrl":null,"url":null,"abstract":"<div><div>Radioactive iodine is a hazardous product generated by nuclear energy, and it is important to design new porous materials to capture and store iodine. In this work, a nitrogen-rich conjugated covalent organic framework (JLNU-318) was constructed. JLNU-318 has high crystallinity, large specific surface area (1008.88 mg<sup>2</sup>/g), and strong thermal and chemical stability, which makes it an ideal choice for iodine adsorption. JLNU-318 exhibits iodine adsorption capacity of 4.25 g g<sup>−1</sup> at 75 °C for 50 h, and recycles five times without significantly decrease in its adsorption capacity. Theoretical calculations demonstrated that the strong interactions between the nitrogen-rich (imine N, sp<sup>3</sup> N) and conjugated structures (C═C) in JLNU-318 and the iodine molecules resulted in the transformation of iodine vapor into polyiodide anions, which were firmly adsorbed in the pores. This work establishes a novel approach to enhance the performance of COFs in the field of iodine adsorption.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"346 ","pages":"Article 125258"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625000817","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Radioactive iodine is a hazardous product generated by nuclear energy, and it is important to design new porous materials to capture and store iodine. In this work, a nitrogen-rich conjugated covalent organic framework (JLNU-318) was constructed. JLNU-318 has high crystallinity, large specific surface area (1008.88 mg2/g), and strong thermal and chemical stability, which makes it an ideal choice for iodine adsorption. JLNU-318 exhibits iodine adsorption capacity of 4.25 g g−1 at 75 °C for 50 h, and recycles five times without significantly decrease in its adsorption capacity. Theoretical calculations demonstrated that the strong interactions between the nitrogen-rich (imine N, sp3 N) and conjugated structures (C═C) in JLNU-318 and the iodine molecules resulted in the transformation of iodine vapor into polyiodide anions, which were firmly adsorbed in the pores. This work establishes a novel approach to enhance the performance of COFs in the field of iodine adsorption.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
期刊最新文献
Long-term aging of multiwall nanotubes and fullerene-like nanoparticles of WS2 A Ge/GeO2/Titanate nanocomposite with high energy density and enhanced long-term stability for lithium-ion batteries A nitrogen-rich conjugated covalent organic framework enabling effective iodine adsorption Preparation of a metal‒organic framework glass‒based chiral stationary phase for HPLC enantiomer separation The effective role of open metal sites in defective quasi-MOF-801 as hydrogen generation reactions catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1