A novel continuous dynamic recrystallization model to reveal grain refinement mechanism in constraining ring rolling of thin-walled conical structure with inner ribs

IF 14 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Machine Tools & Manufacture Pub Date : 2025-02-07 DOI:10.1016/j.ijmachtools.2025.104255
Fei Chen , Xiao Tian , Zixuan Liu , Dongsheng Qian , Xinghui Han , Bing Wang , He Wang , Zhenshan Cui
{"title":"A novel continuous dynamic recrystallization model to reveal grain refinement mechanism in constraining ring rolling of thin-walled conical structure with inner ribs","authors":"Fei Chen ,&nbsp;Xiao Tian ,&nbsp;Zixuan Liu ,&nbsp;Dongsheng Qian ,&nbsp;Xinghui Han ,&nbsp;Bing Wang ,&nbsp;He Wang ,&nbsp;Zhenshan Cui","doi":"10.1016/j.ijmachtools.2025.104255","DOIUrl":null,"url":null,"abstract":"<div><div>Constraining ring rolling (CRR) is an integral and near net-shape forming approach to fabricate the seamless ring aluminum components in aerospace field. The service property of the formed ring components mainly depends on the microscopical grain texture. However, investigation and modeling of microstructure evolution in this complex hot working processes are not appropriately performed, which hinders further control of the forming quality of components during CRR. In this study, by analyzing the characteristics of CRR process and deformation modes in different characteristic zones of typical thin-walled conical ring with inner transverse ribs (TWCRITRs), a continuous dynamic recrystallization (CDRX) model of aluminum alloy that considers the influence of thermal deformation history was firstly proposed. The developed CDRX model was integrated into the finite element (FE) to predict microstructure evolution throughout the entire hot working process. The optimal parameters of the CRR process were obtained with the uniformity and fineness of microstructure as the goal, guiding the subsequent forming experiment. The predicted shape and microstructure agree well with the experimental results. It is found that the grain refinement mechanisms of 2A14 Al-alloy TWCRITRs during CRR include CDRX and thin grain cutting CDRX. Due to the low-angle grain boundaries (LAGBs) being pinned by the upper and lower high-angle grain boundaries (HAGBs), the recrystallization efficiency in the thin grain cutting CDRX is higher than that in the traditional CDRX mechanism. The shear deformation at thin-wall and complex deformation at the corner promotes the occurrence of thin grain cutting CDRX mechanism with a higher recrystallization efficiency. Eventually, the mechanical properties of manufacturing TWCRITRs met the requirements. All of these provide additional insights into the shape and microstructure controlled CRR process for TWCRITRs.</div></div>","PeriodicalId":14011,"journal":{"name":"International Journal of Machine Tools & Manufacture","volume":"206 ","pages":"Article 104255"},"PeriodicalIF":14.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tools & Manufacture","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890695525000100","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Constraining ring rolling (CRR) is an integral and near net-shape forming approach to fabricate the seamless ring aluminum components in aerospace field. The service property of the formed ring components mainly depends on the microscopical grain texture. However, investigation and modeling of microstructure evolution in this complex hot working processes are not appropriately performed, which hinders further control of the forming quality of components during CRR. In this study, by analyzing the characteristics of CRR process and deformation modes in different characteristic zones of typical thin-walled conical ring with inner transverse ribs (TWCRITRs), a continuous dynamic recrystallization (CDRX) model of aluminum alloy that considers the influence of thermal deformation history was firstly proposed. The developed CDRX model was integrated into the finite element (FE) to predict microstructure evolution throughout the entire hot working process. The optimal parameters of the CRR process were obtained with the uniformity and fineness of microstructure as the goal, guiding the subsequent forming experiment. The predicted shape and microstructure agree well with the experimental results. It is found that the grain refinement mechanisms of 2A14 Al-alloy TWCRITRs during CRR include CDRX and thin grain cutting CDRX. Due to the low-angle grain boundaries (LAGBs) being pinned by the upper and lower high-angle grain boundaries (HAGBs), the recrystallization efficiency in the thin grain cutting CDRX is higher than that in the traditional CDRX mechanism. The shear deformation at thin-wall and complex deformation at the corner promotes the occurrence of thin grain cutting CDRX mechanism with a higher recrystallization efficiency. Eventually, the mechanical properties of manufacturing TWCRITRs met the requirements. All of these provide additional insights into the shape and microstructure controlled CRR process for TWCRITRs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.70
自引率
10.00%
发文量
66
审稿时长
18 days
期刊介绍: The International Journal of Machine Tools and Manufacture is dedicated to advancing scientific comprehension of the fundamental mechanics involved in processes and machines utilized in the manufacturing of engineering components. While the primary focus is on metals, the journal also explores applications in composites, ceramics, and other structural or functional materials. The coverage includes a diverse range of topics: - Essential mechanics of processes involving material removal, accretion, and deformation, encompassing solid, semi-solid, or particulate forms. - Significant scientific advancements in existing or new processes and machines. - In-depth characterization of workpiece materials (structure/surfaces) through advanced techniques (e.g., SEM, EDS, TEM, EBSD, AES, Raman spectroscopy) to unveil new phenomenological aspects governing manufacturing processes. - Tool design, utilization, and comprehensive studies of failure mechanisms. - Innovative concepts of machine tools, fixtures, and tool holders supported by modeling and demonstrations relevant to manufacturing processes within the journal's scope. - Novel scientific contributions exploring interactions between the machine tool, control system, software design, and processes. - Studies elucidating specific mechanisms governing niche processes (e.g., ultra-high precision, nano/atomic level manufacturing with either mechanical or non-mechanical "tools"). - Innovative approaches, underpinned by thorough scientific analysis, addressing emerging or breakthrough processes (e.g., bio-inspired manufacturing) and/or applications (e.g., ultra-high precision optics).
期刊最新文献
A novel continuous dynamic recrystallization model to reveal grain refinement mechanism in constraining ring rolling of thin-walled conical structure with inner ribs Covalently armoring graphene on diamond abrasives with unprecedented wear resistance and abrasive performance Editorial Board Laser additive manufacturing of multimaterials with hierarchical interlocking interface via a flexible scraper-based method Electrical discharge-mechanical hybrid drilling of micro-holes in carbon fibre-reinforced polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1