{"title":"Abnormal neuritic microstructures in the anterior limb of internal capsules in treatment-resistant depression - A cross-sectional NODDI study","authors":"Koki Takahashi , Yoshihiro Noda , Nobuaki Hondo , Shuhei Shibukawa , Koji Kamagata , Masataka Wada , Shiori Honda , Saki Homma , Amaki Tsukazaki , Sakiko Tsugawa , Yui Tobari , Sotaro Moriyama , Keita Taniguchi , Shinsuke Koike , Clifford Cassidy , Masaru Mimura , Hiroyuki Uchida , Shinichiro Nakajima","doi":"10.1016/j.jpsychires.2025.02.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Microstructural deficits of brain tissue are implicated in the pathophysiology of major depressive disorder (MDD). Recent studies have highlighted the neurotrophic mechanisms underlying effective treatments such as ketamine for treatment-resistant depression (TRD). However, little is known about microstructural changes in TRD. Neurite orientation dispersion and density imaging (NODDI) has enabled in vivo investigation of gray matter (GM) and white matter (WM) microstructure. This study sought to examine microstructural abnormalities in gray and white matter in patients with TRD using NODDI.</div></div><div><h3>Methods</h3><div>This study compared the neurite density index (NDI) and orientation dispersion index (ODI) of neurites in 70 patients with TRD and 35 healthy controls. We fitted separate optimal NODDI models for gray and white matter. The locations of microstructural deficit were identified using region-based and voxel-based analysis. The affected white matter fibers were tracked with correlational tractography analysis.</div></div><div><h3>Results</h3><div>An increase of ODI at the middle to the ventral part of the right anterior limb of the internal capsule (ALIC) was observed in patients with TRD compared with healthy controls. The quantitative anisotropy of frontothalamic fibers passing through the ALIC negatively correlated with the ODI increase in the TRD group.</div></div><div><h3>Conclusion</h3><div>The microstructural disorganization of the frontothalamic pathway could be linked to the pathophysiology and individual heterogeneity of TRD.</div></div>","PeriodicalId":16868,"journal":{"name":"Journal of psychiatric research","volume":"183 ","pages":"Pages 93-99"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of psychiatric research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022395625000755","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Microstructural deficits of brain tissue are implicated in the pathophysiology of major depressive disorder (MDD). Recent studies have highlighted the neurotrophic mechanisms underlying effective treatments such as ketamine for treatment-resistant depression (TRD). However, little is known about microstructural changes in TRD. Neurite orientation dispersion and density imaging (NODDI) has enabled in vivo investigation of gray matter (GM) and white matter (WM) microstructure. This study sought to examine microstructural abnormalities in gray and white matter in patients with TRD using NODDI.
Methods
This study compared the neurite density index (NDI) and orientation dispersion index (ODI) of neurites in 70 patients with TRD and 35 healthy controls. We fitted separate optimal NODDI models for gray and white matter. The locations of microstructural deficit were identified using region-based and voxel-based analysis. The affected white matter fibers were tracked with correlational tractography analysis.
Results
An increase of ODI at the middle to the ventral part of the right anterior limb of the internal capsule (ALIC) was observed in patients with TRD compared with healthy controls. The quantitative anisotropy of frontothalamic fibers passing through the ALIC negatively correlated with the ODI increase in the TRD group.
Conclusion
The microstructural disorganization of the frontothalamic pathway could be linked to the pathophysiology and individual heterogeneity of TRD.
期刊介绍:
Founded in 1961 to report on the latest work in psychiatry and cognate disciplines, the Journal of Psychiatric Research is dedicated to innovative and timely studies of four important areas of research:
(1) clinical studies of all disciplines relating to psychiatric illness, as well as normal human behaviour, including biochemical, physiological, genetic, environmental, social, psychological and epidemiological factors;
(2) basic studies pertaining to psychiatry in such fields as neuropsychopharmacology, neuroendocrinology, electrophysiology, genetics, experimental psychology and epidemiology;
(3) the growing application of clinical laboratory techniques in psychiatry, including imagery and spectroscopy of the brain, molecular biology and computer sciences;