Mogroside III improves bovine oocyte in vitro maturation by regulating autophagy in cumulus cells

IF 2.4 2区 农林科学 Q3 REPRODUCTIVE BIOLOGY Theriogenology Pub Date : 2025-02-11 DOI:10.1016/j.theriogenology.2025.02.006
Xinru Tian , Peng Xiao , Mengqi Li , Nannan Li , Yilin Huang , Chunyan Yang , Haiying Zheng , Xiaogan Yang , Jianghua Shang , Xingwei Liang
{"title":"Mogroside III improves bovine oocyte in vitro maturation by regulating autophagy in cumulus cells","authors":"Xinru Tian ,&nbsp;Peng Xiao ,&nbsp;Mengqi Li ,&nbsp;Nannan Li ,&nbsp;Yilin Huang ,&nbsp;Chunyan Yang ,&nbsp;Haiying Zheng ,&nbsp;Xiaogan Yang ,&nbsp;Jianghua Shang ,&nbsp;Xingwei Liang","doi":"10.1016/j.theriogenology.2025.02.006","DOIUrl":null,"url":null,"abstract":"<div><div><em>In vitro</em> maturation (IVM) of oocytes is pivotal for successful embryo production. Cumulus cells (CCs) contribute to oocyte maturation through the secretion of hormones and nutrients, with proper autophagic activity being crucial for this process. However, the role of autophagy in CCs remains underexplored. <em>Siraitia grosvenorii</em> extract Mogroside III (MIII), known for its antioxidant properties, has yet to be extensively studied for its impact on bovine oocyte IVM and its potential regulatory effects on autophagy. This study assessed the influence of MIII on autophagic activity in CCs and its subsequent effects on oocyte developmental potential. The results demonstrated that MIII enhanced bovine oocyte IVM, promoted CC expansion, and supported embryonic development. Transcriptomic analysis indicated that MIII upregulated the expression of autophagy-related genes. <em>In vitro</em> experiments on CCs revealed that MIII increased LC3B protein levels, reduced SQSTM1 accumulation, and upregulated the gene expression of <em>LC3</em>, <em>Beclin1</em>, and <em>ATG5</em>. In co-culture systems, autophagy inhibition in CCs impaired oocyte IVM and embryonic development, but MIII alleviated these effects, restoring oocyte developmental capacity compromised by 3-MA-induced autophagy inhibition. Mechanistically, MIII facilitated the degradation of WT1 by upregulating LC3B, influencing CC differentiation, enhancing FSHR synthesis, and increasing estrogen and progesterone secretion. In conclusion, MIII enhances oocyte developmental potential by modulating autophagy in CCs.</div></div>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":"237 ","pages":"Pages 1-12"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theriogenology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093691X25000524","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In vitro maturation (IVM) of oocytes is pivotal for successful embryo production. Cumulus cells (CCs) contribute to oocyte maturation through the secretion of hormones and nutrients, with proper autophagic activity being crucial for this process. However, the role of autophagy in CCs remains underexplored. Siraitia grosvenorii extract Mogroside III (MIII), known for its antioxidant properties, has yet to be extensively studied for its impact on bovine oocyte IVM and its potential regulatory effects on autophagy. This study assessed the influence of MIII on autophagic activity in CCs and its subsequent effects on oocyte developmental potential. The results demonstrated that MIII enhanced bovine oocyte IVM, promoted CC expansion, and supported embryonic development. Transcriptomic analysis indicated that MIII upregulated the expression of autophagy-related genes. In vitro experiments on CCs revealed that MIII increased LC3B protein levels, reduced SQSTM1 accumulation, and upregulated the gene expression of LC3, Beclin1, and ATG5. In co-culture systems, autophagy inhibition in CCs impaired oocyte IVM and embryonic development, but MIII alleviated these effects, restoring oocyte developmental capacity compromised by 3-MA-induced autophagy inhibition. Mechanistically, MIII facilitated the degradation of WT1 by upregulating LC3B, influencing CC differentiation, enhancing FSHR synthesis, and increasing estrogen and progesterone secretion. In conclusion, MIII enhances oocyte developmental potential by modulating autophagy in CCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Theriogenology
Theriogenology 农林科学-生殖生物学
CiteScore
5.50
自引率
14.30%
发文量
387
审稿时长
72 days
期刊介绍: Theriogenology provides an international forum for researchers, clinicians, and industry professionals in animal reproductive biology. This acclaimed journal publishes articles on a wide range of topics in reproductive and developmental biology, of domestic mammal, avian, and aquatic species as well as wild species which are the object of veterinary care in research or conservation programs.
期刊最新文献
The effect of L-carnitine on frozen-thawed rooster sperm quality and fertility potential Effects of storing queen ovaries in saline solution at 22 C on ovarian follicle integrity and oocyte quality and maturation Effects of estradiol on PGF2α synthesis and corpus luteum function during early pregnancy in beef heifers oar-miR-29a promotes the establishment of endometrial receptivity by targeting CDC42 in sheep Influence of the follicular wave on gene expression and in vitro embryo production in cattle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1