Seniyecan Kahraman , Ayşenur Katırcı , Ayşe Aytaç , Sevil Veli , Filiz Uğur Nigiz
{"title":"Fabrication and characterization electrospun clinoptilolite filled polylactic acid composite membrane: purification of multiple impurities from water","authors":"Seniyecan Kahraman , Ayşenur Katırcı , Ayşe Aytaç , Sevil Veli , Filiz Uğur Nigiz","doi":"10.1016/j.clay.2025.107756","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, electrospun clinoptilolite (Clp)- polylactic acid (PLA) nanocomposite membranes were produced and used for dyestuff (methylene blue, MB), oil (soybean oil), microplastic (Polyamide 66, PA66), and Linear Alkyl Benzene Sulfonate (LAS) rejection from simulated gray water. The membrane's physical, chemical, thermal, morphological, mechanical, and antimicrobial properties were investigated regarding Clp incorporation. According to the characterization results, the empirical porosity of the membrane was found to be between 79 % and 83 %. The PLA membrane's water uptake capacity, surface hydrophilicity, and mechanical strength were improved with Clp incorporation. All membranes show antimicrobial effects against both gram-positive and negative bacteria. According to the filtration test results, MB separation was above 90 %. The highest oil rejection was found to be 87.84 % using 4 wt% Clp loaded membrane. All membranes rejected 100 % of microplastic. 66.6 % of LAS rejection was achieved with 3 wt% Clp loaded membrane. All separation and characterization results show that Clp-doped PLA membranes have the potential to be used as a filtration membrane that can simultaneously separate all impurities from water.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"268 ","pages":"Article 107756"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725000614","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, electrospun clinoptilolite (Clp)- polylactic acid (PLA) nanocomposite membranes were produced and used for dyestuff (methylene blue, MB), oil (soybean oil), microplastic (Polyamide 66, PA66), and Linear Alkyl Benzene Sulfonate (LAS) rejection from simulated gray water. The membrane's physical, chemical, thermal, morphological, mechanical, and antimicrobial properties were investigated regarding Clp incorporation. According to the characterization results, the empirical porosity of the membrane was found to be between 79 % and 83 %. The PLA membrane's water uptake capacity, surface hydrophilicity, and mechanical strength were improved with Clp incorporation. All membranes show antimicrobial effects against both gram-positive and negative bacteria. According to the filtration test results, MB separation was above 90 %. The highest oil rejection was found to be 87.84 % using 4 wt% Clp loaded membrane. All membranes rejected 100 % of microplastic. 66.6 % of LAS rejection was achieved with 3 wt% Clp loaded membrane. All separation and characterization results show that Clp-doped PLA membranes have the potential to be used as a filtration membrane that can simultaneously separate all impurities from water.
期刊介绍:
Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as:
• Synthesis and purification
• Structural, crystallographic and mineralogical properties of clays and clay minerals
• Thermal properties of clays and clay minerals
• Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties
• Interaction with water, with polar and apolar molecules
• Colloidal properties and rheology
• Adsorption, Intercalation, Ionic exchange
• Genesis and deposits of clay minerals
• Geology and geochemistry of clays
• Modification of clays and clay minerals properties by thermal and physical treatments
• Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays)
• Modification by biological microorganisms. etc...