A dynamic model for the prediction of malodorous compounds production from anaerobic methanogenic biofilm

IF 6.3 2区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of water process engineering Pub Date : 2025-02-15 DOI:10.1016/j.jwpe.2025.107230
Malek G. Hajaya , Rawan N. AlKaraki , Nataliia Kurnikova , Sergio Bordel , Raúl Muñoz
{"title":"A dynamic model for the prediction of malodorous compounds production from anaerobic methanogenic biofilm","authors":"Malek G. Hajaya ,&nbsp;Rawan N. AlKaraki ,&nbsp;Nataliia Kurnikova ,&nbsp;Sergio Bordel ,&nbsp;Raúl Muñoz","doi":"10.1016/j.jwpe.2025.107230","DOIUrl":null,"url":null,"abstract":"<div><div>A dynamic 1-D mathematical model for production and emission of a group of malodorous Volatile Sulphurous Compounds (VSCs) and volatile fatty acids from anaerobic microbial biofilms was herein formulated, calibrated, and validated. Mathematically, the biofilm was modelled using a multispecies approach, while microbial activity was modelled using the well-established Anaerobic Digestion Model 1 framework, amended with biochemical and physico-chemical processes to accurately represent the kinetics and compounds transportation in anaerobic methanogenic sulphate reducing biofilms. The model was formulated as an integrated Anaerobic Biofilm Reactor Model (ABRM) that provides a combined a dynamic output based on the processes taking place in the biofilm, liquid, and gas phases. Published experimental data representing the production of the targeted malodorous compounds obtained from a multi-reactor, lab-scale, anaerobic biofilm containing system fed with real wastewater was used to calibrate the model's parameters and to validate its predictions. ABRM predicted sulphite reduction and methanogenesis kinetics with R<sup>2</sup> values ≥0.916 and matched the trends of spatial and temporal variations of the experimental targeted malodorous compounds concentrations inside the reactors with Spearman's rank correlation coefficients ≥0.922. Simulation results for ABRM predicted spatial variations in the anaerobic biofilm's microbial species distribution, abundance, growth, substrate competition and uptake, hydrogen sulphate inhibition, and the levels of targeted malodorous compounds production and emissions in response to changes in operational conditions. In an integrated approach for odour control strategies, ABRM can play a great role in predicting malodorous emissions from microbial biofilms in wastewater treatment processes.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"71 ","pages":"Article 107230"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714425003022","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A dynamic 1-D mathematical model for production and emission of a group of malodorous Volatile Sulphurous Compounds (VSCs) and volatile fatty acids from anaerobic microbial biofilms was herein formulated, calibrated, and validated. Mathematically, the biofilm was modelled using a multispecies approach, while microbial activity was modelled using the well-established Anaerobic Digestion Model 1 framework, amended with biochemical and physico-chemical processes to accurately represent the kinetics and compounds transportation in anaerobic methanogenic sulphate reducing biofilms. The model was formulated as an integrated Anaerobic Biofilm Reactor Model (ABRM) that provides a combined a dynamic output based on the processes taking place in the biofilm, liquid, and gas phases. Published experimental data representing the production of the targeted malodorous compounds obtained from a multi-reactor, lab-scale, anaerobic biofilm containing system fed with real wastewater was used to calibrate the model's parameters and to validate its predictions. ABRM predicted sulphite reduction and methanogenesis kinetics with R2 values ≥0.916 and matched the trends of spatial and temporal variations of the experimental targeted malodorous compounds concentrations inside the reactors with Spearman's rank correlation coefficients ≥0.922. Simulation results for ABRM predicted spatial variations in the anaerobic biofilm's microbial species distribution, abundance, growth, substrate competition and uptake, hydrogen sulphate inhibition, and the levels of targeted malodorous compounds production and emissions in response to changes in operational conditions. In an integrated approach for odour control strategies, ABRM can play a great role in predicting malodorous emissions from microbial biofilms in wastewater treatment processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of water process engineering
Journal of water process engineering Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
10.70
自引率
8.60%
发文量
846
审稿时长
24 days
期刊介绍: The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies
期刊最新文献
Understanding of the effect of COD/SO42− ratios and hydraulic retention times on an MFC-EGSB coupling system for treatment sulfate wastewater: Performance and potential mechanisms Enhanced accuracy and interpretability of nitrous oxide emission prediction of wastewater treatment plants through machine learning of univariate time series: A novel approach of learning feature reconstruction Analytical approaches to track nylon 6 microplastic fiber degradation using HKUST-1(Cu/Fe)-derived CuO/TiO2 photocatalyst Life cycle assessment of industrial wastewater treatment: Evaluating the environmental impact of electrocoagulation technologies Influence of carbon source supplementation on the development of autotrophic nitrification and microbial community composition in biofloc technology systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1