{"title":"A Multihierarchy Flow Field Prediction Network for Multimodal Remote Sensing Image Registration","authors":"Wenqing Wang;Kunpeng Mu;Han Liu","doi":"10.1109/JSTARS.2025.3532939","DOIUrl":null,"url":null,"abstract":"Multimodal remote sensing image registration aims to achieve alignment between different modal image pairs. This effectively enhances the subsequent effects of multisource data fusion, object detection and recognition, and provides support for geographic spatial analysis and applications. Most existing approaches for multimodal remote sensing image registration are targeted at registering rigid transformations accompanied by large-scale deformations. Regrettably, they overlook the local disparities between different modalities and are incapable of effectively handling scenes with nonrigid distortions. Therefore, this article proposes a multimodal remote sensing image registration method that uses multihierarchy flow field cumulative prediction at different scales. The method consists of a multiscale feature pyramid, a dense feature matching module, a swin-transformer flow field prediction, and a spatial transformation module. The model makes full use of the features of different scales and levels of the image, gradually refines the flow field prediction to align the local nonrigid distortion area, and adopts a registration strategy that combines bidirectional similarity loss and hierarchy feature registration loss for different levels of features of different modalities. At the same time, the photometric error loss is introduced to optimize the entire network from both the feature and original image levels. Experimental results show that our network model shows good registration performance for a variety of cross-modal remote sensing images with nonrigid distortion.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"5232-5243"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10850759","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10850759/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Multimodal remote sensing image registration aims to achieve alignment between different modal image pairs. This effectively enhances the subsequent effects of multisource data fusion, object detection and recognition, and provides support for geographic spatial analysis and applications. Most existing approaches for multimodal remote sensing image registration are targeted at registering rigid transformations accompanied by large-scale deformations. Regrettably, they overlook the local disparities between different modalities and are incapable of effectively handling scenes with nonrigid distortions. Therefore, this article proposes a multimodal remote sensing image registration method that uses multihierarchy flow field cumulative prediction at different scales. The method consists of a multiscale feature pyramid, a dense feature matching module, a swin-transformer flow field prediction, and a spatial transformation module. The model makes full use of the features of different scales and levels of the image, gradually refines the flow field prediction to align the local nonrigid distortion area, and adopts a registration strategy that combines bidirectional similarity loss and hierarchy feature registration loss for different levels of features of different modalities. At the same time, the photometric error loss is introduced to optimize the entire network from both the feature and original image levels. Experimental results show that our network model shows good registration performance for a variety of cross-modal remote sensing images with nonrigid distortion.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.