Effect of Acoustic Excitation on Colliding Laminar Microjets

IF 0.6 4区 工程技术 Q4 MECHANICS Fluid Dynamics Pub Date : 2025-01-10 DOI:10.1134/S0015462824603188
Yu. A. Litvinenko, A. A. Smyatskikh, M. V. Litvinenko
{"title":"Effect of Acoustic Excitation on Colliding Laminar Microjets","authors":"Yu. A. Litvinenko,&nbsp;A. A. Smyatskikh,&nbsp;M. V. Litvinenko","doi":"10.1134/S0015462824603188","DOIUrl":null,"url":null,"abstract":"<p>The results of studies of the jet formation process during the interaction of two colliding axisymmetric laminar air microjets. The axes of symmetry of the tubes lie in the same plane and intersect at an angle of 60°. The distance between the near ends of the tubes is equal to 4 mm. The outflow with identical velocities was implemented. As a result of the experiment, the distinctive features of the secondary jet formation under natural conditions and under the impact of an external periodic disturbance were revealed. It was found that the resulting jet is formed in the plane orthogonal to the tubes. Under natural conditions, a secondary jet with a beam angle greater than 115° is formed and represents a flattened jet. In the case of the external impact by a periodic acoustic signal, after the interaction of the microjets, a slight flattening appears with the development of secondary oscillations in the orthogonal plane and subsequent rotation with respect to the plane of the tubes.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 6","pages":"1822 - 1830"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462824603188","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The results of studies of the jet formation process during the interaction of two colliding axisymmetric laminar air microjets. The axes of symmetry of the tubes lie in the same plane and intersect at an angle of 60°. The distance between the near ends of the tubes is equal to 4 mm. The outflow with identical velocities was implemented. As a result of the experiment, the distinctive features of the secondary jet formation under natural conditions and under the impact of an external periodic disturbance were revealed. It was found that the resulting jet is formed in the plane orthogonal to the tubes. Under natural conditions, a secondary jet with a beam angle greater than 115° is formed and represents a flattened jet. In the case of the external impact by a periodic acoustic signal, after the interaction of the microjets, a slight flattening appears with the development of secondary oscillations in the orthogonal plane and subsequent rotation with respect to the plane of the tubes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声激励对层流微射流碰撞的影响
两个轴对称层流空气微射流相互作用时射流形成过程的研究结果。这些管子的对称轴在同一平面上,并以60度角相交。两管近端间距为4mm。实现了等速流出。实验结果揭示了在自然条件下和外部周期性扰动作用下二次射流形成的独特特征。结果表明,射流是在与管正交的平面上形成的。在自然条件下,形成光束角大于115°的二次射流,为扁平射流。在周期性声信号外部冲击的情况下,微射流相互作用后,随着正交平面二次振荡的发展和随后相对于管平面的旋转,出现轻微的平坦化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
期刊最新文献
Evolution of Perturbations in Submerged Jets Eddy-Resolving Numerical Simulation of Mixed Convection in a Rotating Annular Heated Cavity with Axial Throughflow Numerical and Experimental Investigation of Non-Cavitation Noise of Axial Flow Pumps for Various Pump Parameters Review of the Numerical and Experimental Studies of the Hyperloop Cavitation Bubble Collapse over a Solid Surface: A Numerical Approach Incorporating Surface and Flow Variations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1