{"title":"Model of Nonequilibrium Emissivity of Diatomic Molecules Averaged over the Rotational Structure","authors":"S. T. Surzhikov","doi":"10.1134/S0015462824605291","DOIUrl":null,"url":null,"abstract":"<p>The article presents the derivation of the calculated relations for the model of the emissivity of the electronic vibrational bands of diatomic molecules averaged over the rotational structure. The model is based on the ab-initio expression for the integral radiation emission coefficient of the rotational line of an electron-vibrational-rotational quantum transition and the results of ab-initio calculations of the Einstein coefficients of rovibronic quantum transitions of spontaneous emission. Calculation formulas are obtained for the averaged emissivity coefficients of heteronuclear molecules. Their validity is shown for homonuclear molecules, including states of different symmetries, in the spectra of which alternating intensities of the emission of rotational lines are observed. Using the obtained relations, spectra of nonequilibrium radiation from the shock wave relaxation zone were obtained in shock wave experiments in air at a speed of 7.3 km/s and a pressure of 0.7 Torr in a low-pressure chamber. The results were compared to experimental data.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":"59 6","pages":"2138 - 2152"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0015462824605291","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The article presents the derivation of the calculated relations for the model of the emissivity of the electronic vibrational bands of diatomic molecules averaged over the rotational structure. The model is based on the ab-initio expression for the integral radiation emission coefficient of the rotational line of an electron-vibrational-rotational quantum transition and the results of ab-initio calculations of the Einstein coefficients of rovibronic quantum transitions of spontaneous emission. Calculation formulas are obtained for the averaged emissivity coefficients of heteronuclear molecules. Their validity is shown for homonuclear molecules, including states of different symmetries, in the spectra of which alternating intensities of the emission of rotational lines are observed. Using the obtained relations, spectra of nonequilibrium radiation from the shock wave relaxation zone were obtained in shock wave experiments in air at a speed of 7.3 km/s and a pressure of 0.7 Torr in a low-pressure chamber. The results were compared to experimental data.
期刊介绍:
Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.