{"title":"Bioplastic (Polyhydroxybutyrate) Synthesis Using Orange Wastes by the Marine Bacterium Bacillus sp. Caspian04","authors":"Salman Ahmady-Asbchin, Saba Amiri Kojuri","doi":"10.1007/s10924-025-03488-6","DOIUrl":null,"url":null,"abstract":"<div><p>The production and development of bioplastics are necessary to solve the crisis originating from the accumulation of non-biodegradable plastics in the environment. This study aimed to synthesize polyhydroxybutyrate (PHB) using orange wastes by the bacterium separated from the Caspian Sea. Seven PHB synthesizing bacterial isolate were isolated from Caspian Sea water. The initial screening for PHB synthesis was performed with a dye-based method. The most powerful marine bacterium with the synthesis of 1.73 g/L PHB was identified via 16S rRNA gene sequencing as <i>Bacillus</i> sp. Caspian04 and its nucleotide sequence was preserved with the accession number OR999904.1 in GeneBank. PHB synthesis increased in the presence of ammonium chloride, 4% orange wastes extract, and 3% NaCl, at temperature of 35 °C and pH 8.0. Using the orange wastes extract (4% w/v) led to the synthesis of 5.22 g/L PHB, which can help reduce the cost of PHB synthesis. FTIR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, XRD, and TGA were used to evaluate extracted PHB’s characterization. The present study is the first attempt to bioplastic synthesis by bacteria isolated from the Caspian Sea. Furthermore, with the biotechnological production of PHB from orange wastes by <i>Bacillus</i> sp. Caspian04, the way will be paved for the development of management strategy of solid wastes and highlights the role of marine bacteria in the production of polymers with commercial value.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 3","pages":"1636 - 1650"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03488-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The production and development of bioplastics are necessary to solve the crisis originating from the accumulation of non-biodegradable plastics in the environment. This study aimed to synthesize polyhydroxybutyrate (PHB) using orange wastes by the bacterium separated from the Caspian Sea. Seven PHB synthesizing bacterial isolate were isolated from Caspian Sea water. The initial screening for PHB synthesis was performed with a dye-based method. The most powerful marine bacterium with the synthesis of 1.73 g/L PHB was identified via 16S rRNA gene sequencing as Bacillus sp. Caspian04 and its nucleotide sequence was preserved with the accession number OR999904.1 in GeneBank. PHB synthesis increased in the presence of ammonium chloride, 4% orange wastes extract, and 3% NaCl, at temperature of 35 °C and pH 8.0. Using the orange wastes extract (4% w/v) led to the synthesis of 5.22 g/L PHB, which can help reduce the cost of PHB synthesis. FTIR, 1H NMR, 13C NMR, XRD, and TGA were used to evaluate extracted PHB’s characterization. The present study is the first attempt to bioplastic synthesis by bacteria isolated from the Caspian Sea. Furthermore, with the biotechnological production of PHB from orange wastes by Bacillus sp. Caspian04, the way will be paved for the development of management strategy of solid wastes and highlights the role of marine bacteria in the production of polymers with commercial value.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.