Photoacoustic dynamics in microtemperature semiconductor media with variable thermal conductivity and nonlocal effects

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER The European Physical Journal B Pub Date : 2025-02-14 DOI:10.1140/epjb/s10051-025-00877-7
Tarek E. I. Nassar, A. M. S. Mahdy, Kh. Lotfy
{"title":"Photoacoustic dynamics in microtemperature semiconductor media with variable thermal conductivity and nonlocal effects","authors":"Tarek E. I. Nassar,&nbsp;A. M. S. Mahdy,&nbsp;Kh. Lotfy","doi":"10.1140/epjb/s10051-025-00877-7","DOIUrl":null,"url":null,"abstract":"<div><p>The study investigates the photoacoustic pressure effects on microtemperature distributions within a nanostructured (nonlocal) elastic semiconductor medium, where thermal conductivity is considered variable. Photoacoustic phenomena, which involve the generation of acoustic (elastic) waves due to the absorption of modulated light, play a pivotal role in heat transfer dynamics at the nanoscale. The interaction between photoacoustic pressure, plasma waves, and thermal waves influences localized temperature variations in semiconductor nanostructures. The variable thermal conductivity, which accounts for temperature dependence and nanoscale effects, adds complexity to the heat diffusion process. Using mathematical modeling and numerical simulations, the photoacoustic pressure-driven thermal response is analyzed in one dimension (1D) under different excitation frequencies and thermal conductivity profiles. Results show that the variable thermal conductivity significantly affects the propagation of thermal waves, acoustic pressure, elastic, mechanical, microtemperature, and carrier density diffusion, leading to enhanced heat confinement or dispersion depending on material properties and operating conditions. The findings have implications for the design of semiconductor devices where thermal management is critical, such as in photodetectors, microelectronic systems, and optoelectronic devices. This research advances the understanding of nanoscale heat transfer mechanisms in semiconductors under photoacoustic excitation and provides insight into optimizing thermal performance in nanostructured materials.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00877-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The study investigates the photoacoustic pressure effects on microtemperature distributions within a nanostructured (nonlocal) elastic semiconductor medium, where thermal conductivity is considered variable. Photoacoustic phenomena, which involve the generation of acoustic (elastic) waves due to the absorption of modulated light, play a pivotal role in heat transfer dynamics at the nanoscale. The interaction between photoacoustic pressure, plasma waves, and thermal waves influences localized temperature variations in semiconductor nanostructures. The variable thermal conductivity, which accounts for temperature dependence and nanoscale effects, adds complexity to the heat diffusion process. Using mathematical modeling and numerical simulations, the photoacoustic pressure-driven thermal response is analyzed in one dimension (1D) under different excitation frequencies and thermal conductivity profiles. Results show that the variable thermal conductivity significantly affects the propagation of thermal waves, acoustic pressure, elastic, mechanical, microtemperature, and carrier density diffusion, leading to enhanced heat confinement or dispersion depending on material properties and operating conditions. The findings have implications for the design of semiconductor devices where thermal management is critical, such as in photodetectors, microelectronic systems, and optoelectronic devices. This research advances the understanding of nanoscale heat transfer mechanisms in semiconductors under photoacoustic excitation and provides insight into optimizing thermal performance in nanostructured materials.

Graphical abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可变热导率和非局部效应的微温半导体介质中的光声动力学
该研究研究了光声压对纳米结构(非局部)弹性半导体介质中微温度分布的影响,其中热导率被认为是可变的。光声现象涉及到由于调制光的吸收而产生的声(弹性)波,在纳米尺度的传热动力学中起着关键作用。光声压、等离子体波和热波之间的相互作用影响半导体纳米结构中的局部温度变化。热导率的变化,考虑到温度依赖性和纳米尺度效应,增加了热扩散过程的复杂性。利用数学模型和数值模拟,分析了在不同激励频率和导热系数分布下的一维光声压力驱动热响应。结果表明,热导率的变化会显著影响热波的传播、声压、弹性、机械、微温度和载流子密度扩散,导致根据材料性能和操作条件而增强的热约束或分散。这一发现对热管理至关重要的半导体器件的设计具有重要意义,例如光电探测器、微电子系统和光电子器件。该研究促进了对光声激励下半导体纳米尺度传热机制的理解,并为优化纳米结构材料的热性能提供了见解。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
期刊最新文献
Superconducting flux pumping for the high-field HTS magnet: the state of the art Quantum chemical exploration of piperazinium nitrate: molecular stability, reactivity descriptors, electronic excitations, intermolecular interactions, and NLO activity Modification of PCBM electron transport layer (ETL) by potassium iodide in inverted type perovskite solar cells Effect of anisotropy on the overall fluctuation instability of the interface morphology of deep cellular crystal Multiple crossover in the decay of metastable volume fraction of a Blume–Capel ferromagnetic needle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1