New Screen-Printed Carbon Electrodes Molecularly Modified with Methylphenidate Film for Electrochemical Determination of Dopamine by Linear Scan Voltammetry
Fernando Riesco, Gloria A. Cosco-Salguero, Edgar Nagles, Johisner Penagos-Llanos, Rodrigo Segura, John Hurtado
{"title":"New Screen-Printed Carbon Electrodes Molecularly Modified with Methylphenidate Film for Electrochemical Determination of Dopamine by Linear Scan Voltammetry","authors":"Fernando Riesco, Gloria A. Cosco-Salguero, Edgar Nagles, Johisner Penagos-Llanos, Rodrigo Segura, John Hurtado","doi":"10.1002/elan.12028","DOIUrl":null,"url":null,"abstract":"<p>The development of new sensors for dopamine (DP) detection is crucial due to its role as one of the most important neurotransmitters for maintaining mental health. In this context, a novel and simple 2D screen-printed carbon electrode (SPCE) molecularly modified electrode with a methylphenidate film was developed. This electrode exhibited notable activity in DP oxidation at potential values below 0.3 V, achieving a 300% increase in anodic current compared to the unmodified SPCE in an acidic environment (pH 3.0) with phosphate buffer solution. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrode's electrochemical behavior. The electrode achieved a DP detection limit of 0.15 <i>µ</i>mol/L using linear scan voltammetry. Interference studies with ascorbic acid and uric acid confirmed the electrode's selectivity for DP detection. The sensor's effectiveness was validated using real human urine samples, demonstrating accurate and reliable performance.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"37 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elan.12028","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of new sensors for dopamine (DP) detection is crucial due to its role as one of the most important neurotransmitters for maintaining mental health. In this context, a novel and simple 2D screen-printed carbon electrode (SPCE) molecularly modified electrode with a methylphenidate film was developed. This electrode exhibited notable activity in DP oxidation at potential values below 0.3 V, achieving a 300% increase in anodic current compared to the unmodified SPCE in an acidic environment (pH 3.0) with phosphate buffer solution. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrode's electrochemical behavior. The electrode achieved a DP detection limit of 0.15 µmol/L using linear scan voltammetry. Interference studies with ascorbic acid and uric acid confirmed the electrode's selectivity for DP detection. The sensor's effectiveness was validated using real human urine samples, demonstrating accurate and reliable performance.
期刊介绍:
Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications.
Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.