Nonlinear Interaction of the Lunar Tide M2 and the Diurnal Variation of Electron Density in the Ionosphere

IF 2.9 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2025-02-15 DOI:10.1029/2024JA033482
Klemens Hocke, Nicholas M. Pedatella, Yosuke Yamazaki
{"title":"Nonlinear Interaction of the Lunar Tide M2 and the Diurnal Variation of Electron Density in the Ionosphere","authors":"Klemens Hocke,&nbsp;Nicholas M. Pedatella,&nbsp;Yosuke Yamazaki","doi":"10.1029/2024JA033482","DOIUrl":null,"url":null,"abstract":"<p>Ground-based observations of time series of ionospheric electron density indicated the existence of spectral components at the periods of the lunar tidal constituents <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{1}$</annotation>\n </semantics></math> (25.82 hr) and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MK</mtext>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{MK}}_{3}$</annotation>\n </semantics></math> (8.18 hr). It was unclear whether these variations are excited by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MK</mtext>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{MK}}_{3}$</annotation>\n </semantics></math> tides propagating from the surface into the ionosphere or if the variations are due to a nonlinear interaction of the semidiurnal lunar tide <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> with the diurnal variation of ionization (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math>). A simulation was performed with the NSF National Center for Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM). In the stratosphere at the lower boundary of TIME-GCM, the signal of the atmospheric semidiurnal lunar tide <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> is introduced. The TIME-GCM simulation of January–February 2009 shows that the electron density variation in the equatorial <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{F}}_{2}$</annotation>\n </semantics></math> region contains not only a spectral component of the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> period but also spectral components of the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MK</mtext>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{MK}}_{3}$</annotation>\n </semantics></math> periods fulfilling the nonlinear interaction resonance condition for the frequencies of the wave triads (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> + <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math> = <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MK</mtext>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{MK}}_{3}$</annotation>\n </semantics></math>) and (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> − <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math> = <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{1}$</annotation>\n </semantics></math>). The nonlinear interaction resonance condition of the zonal wavenumbers of these wave triads is also fulfilled. Moreover, the relevance of nonlinear interaction of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math> is supported by observations of total electron content (TEC). The amplitude spectrum of the long-term time series of TEC shows that the quasi-diurnal and terdiurnal lunar spectral lines precisely occur at the frequencies of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> − <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> + <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math>.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033482","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JA033482","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ground-based observations of time series of ionospheric electron density indicated the existence of spectral components at the periods of the lunar tidal constituents O 1 ${\mathrm{O}}_{1}$ (25.82 hr) and MK 3 ${\text{MK}}_{3}$ (8.18 hr). It was unclear whether these variations are excited by O 1 ${\mathrm{O}}_{1}$ and MK 3 ${\text{MK}}_{3}$ tides propagating from the surface into the ionosphere or if the variations are due to a nonlinear interaction of the semidiurnal lunar tide M 2 ${\mathrm{M}}_{2}$ with the diurnal variation of ionization ( S 1 ${\mathrm{S}}_{1}$ ). A simulation was performed with the NSF National Center for Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM). In the stratosphere at the lower boundary of TIME-GCM, the signal of the atmospheric semidiurnal lunar tide M 2 ${\mathrm{M}}_{2}$ is introduced. The TIME-GCM simulation of January–February 2009 shows that the electron density variation in the equatorial F 2 ${\mathrm{F}}_{2}$ region contains not only a spectral component of the M 2 ${\mathrm{M}}_{2}$ period but also spectral components of the O 1 ${\mathrm{O}}_{1}$ and MK 3 ${\text{MK}}_{3}$ periods fulfilling the nonlinear interaction resonance condition for the frequencies of the wave triads ( M 2 ${\mathrm{M}}_{2}$ + S 1 ${\mathrm{S}}_{1}$ = MK 3 ${\text{MK}}_{3}$ ) and ( M 2 ${\mathrm{M}}_{2}$ S 1 ${\mathrm{S}}_{1}$ = O 1 ${\mathrm{O}}_{1}$ ). The nonlinear interaction resonance condition of the zonal wavenumbers of these wave triads is also fulfilled. Moreover, the relevance of nonlinear interaction of M 2 ${\mathrm{M}}_{2}$ and S 1 ${\mathrm{S}}_{1}$ is supported by observations of total electron content (TEC). The amplitude spectrum of the long-term time series of TEC shows that the quasi-diurnal and terdiurnal lunar spectral lines precisely occur at the frequencies of M 2 ${\mathrm{M}}_{2}$ S 1 ${\mathrm{S}}_{1}$ and M 2 ${\mathrm{M}}_{2}$ + S 1 ${\mathrm{S}}_{1}$ .

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
月潮M2与电离层电子密度日变化的非线性相互作用
对电离层电子密度时间序列的地基观测表明,在月球潮汐成分 O 1 ${\mathrm{O}}_{1}$ (25.82 小时)和 MK 3 ${\text{MK}}_{3}$ (8.18 小时)的周期存在光谱成分。目前还不清楚这些变化是由从地表传播到电离层的 O 1 ${\mathrm{O}}_{1}$ 和 MK 3 ${text\{MK}}_{3}$ 潮汐引起的,还是由半日月潮 M 2 ${\mathrm{M}}_{2}$ 与电离的日变化(S 1 ${\mathrm{S}}_{1}$ )的非线性相互作用引起的。利用美国国家科学基金会国家大气研究中心的热层-电离层-大气层电动力学大气环流模式(TIME-GCM)进行了模拟。在 TIME-GCM 下边界的平流层中,引入了大气半月潮 M 2 ${{mathrm{M}}_{2}$ 的信号。The TIME-GCM simulation of January–February 2009 shows that the electron density variation in the equatorial F 2 ${\mathrm{F}}_{2}$ region contains not only a spectral component of the M 2 ${\mathrm{M}}_{2}$ period but also spectral components of the O 1 ${\mathrm{O}}_{1}$ and MK 3 ${\text{MK}}_{3}$ periods fulfilling the nonlinear interaction resonance condition for the frequencies of the wave triads ( M 2 ${\mathrm{M}}_{2}$ + S 1 ${\mathrm{S}}_{1}$ = MK 3 ${\text{MK}}_{3}$ ) and ( M 2 ${\mathrm{M}}_{2}$ − S 1 ${\mathrm{S}}_{1}$ = O 1 ${\mathrm{O}}_{1}$ ).这些波三元组的带状波数也满足非线性相互作用共振条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
Complex Ionospheric Irregularity Echoes Observed by Low Latitude Long Range Ionospheric Radar Statistical Auroral Absorption Model Parameterized by AE Index Whistler Critical Mach Number Concept Revisited Global MHD Simulations: Magnetosphere–Ionosphere Coupling Dependence on Conductance Model Self-Organized Hexagon-Shaped Jets in Rotating Fluid Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1