Nonlinear Interaction of the Lunar Tide M2 and the Diurnal Variation of Electron Density in the Ionosphere

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Journal of Geophysical Research: Space Physics Pub Date : 2025-02-15 DOI:10.1029/2024JA033482
Klemens Hocke, Nicholas M. Pedatella, Yosuke Yamazaki
{"title":"Nonlinear Interaction of the Lunar Tide M2 and the Diurnal Variation of Electron Density in the Ionosphere","authors":"Klemens Hocke,&nbsp;Nicholas M. Pedatella,&nbsp;Yosuke Yamazaki","doi":"10.1029/2024JA033482","DOIUrl":null,"url":null,"abstract":"<p>Ground-based observations of time series of ionospheric electron density indicated the existence of spectral components at the periods of the lunar tidal constituents <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{1}$</annotation>\n </semantics></math> (25.82 hr) and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MK</mtext>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{MK}}_{3}$</annotation>\n </semantics></math> (8.18 hr). It was unclear whether these variations are excited by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MK</mtext>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{MK}}_{3}$</annotation>\n </semantics></math> tides propagating from the surface into the ionosphere or if the variations are due to a nonlinear interaction of the semidiurnal lunar tide <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> with the diurnal variation of ionization (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math>). A simulation was performed with the NSF National Center for Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM). In the stratosphere at the lower boundary of TIME-GCM, the signal of the atmospheric semidiurnal lunar tide <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> is introduced. The TIME-GCM simulation of January–February 2009 shows that the electron density variation in the equatorial <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{F}}_{2}$</annotation>\n </semantics></math> region contains not only a spectral component of the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> period but also spectral components of the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MK</mtext>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{MK}}_{3}$</annotation>\n </semantics></math> periods fulfilling the nonlinear interaction resonance condition for the frequencies of the wave triads (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> + <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math> = <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>MK</mtext>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{MK}}_{3}$</annotation>\n </semantics></math>) and (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> − <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math> = <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>O</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{O}}_{1}$</annotation>\n </semantics></math>). The nonlinear interaction resonance condition of the zonal wavenumbers of these wave triads is also fulfilled. Moreover, the relevance of nonlinear interaction of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math> is supported by observations of total electron content (TEC). The amplitude spectrum of the long-term time series of TEC shows that the quasi-diurnal and terdiurnal lunar spectral lines precisely occur at the frequencies of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> − <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{M}}_{2}$</annotation>\n </semantics></math> + <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{1}$</annotation>\n </semantics></math>.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033482","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033482","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ground-based observations of time series of ionospheric electron density indicated the existence of spectral components at the periods of the lunar tidal constituents O 1 ${\mathrm{O}}_{1}$ (25.82 hr) and MK 3 ${\text{MK}}_{3}$ (8.18 hr). It was unclear whether these variations are excited by O 1 ${\mathrm{O}}_{1}$ and MK 3 ${\text{MK}}_{3}$ tides propagating from the surface into the ionosphere or if the variations are due to a nonlinear interaction of the semidiurnal lunar tide M 2 ${\mathrm{M}}_{2}$ with the diurnal variation of ionization ( S 1 ${\mathrm{S}}_{1}$ ). A simulation was performed with the NSF National Center for Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM). In the stratosphere at the lower boundary of TIME-GCM, the signal of the atmospheric semidiurnal lunar tide M 2 ${\mathrm{M}}_{2}$ is introduced. The TIME-GCM simulation of January–February 2009 shows that the electron density variation in the equatorial F 2 ${\mathrm{F}}_{2}$ region contains not only a spectral component of the M 2 ${\mathrm{M}}_{2}$ period but also spectral components of the O 1 ${\mathrm{O}}_{1}$ and MK 3 ${\text{MK}}_{3}$ periods fulfilling the nonlinear interaction resonance condition for the frequencies of the wave triads ( M 2 ${\mathrm{M}}_{2}$  +  S 1 ${\mathrm{S}}_{1}$  =  MK 3 ${\text{MK}}_{3}$ ) and ( M 2 ${\mathrm{M}}_{2}$ S 1 ${\mathrm{S}}_{1}$  =  O 1 ${\mathrm{O}}_{1}$ ). The nonlinear interaction resonance condition of the zonal wavenumbers of these wave triads is also fulfilled. Moreover, the relevance of nonlinear interaction of M 2 ${\mathrm{M}}_{2}$ and S 1 ${\mathrm{S}}_{1}$ is supported by observations of total electron content (TEC). The amplitude spectrum of the long-term time series of TEC shows that the quasi-diurnal and terdiurnal lunar spectral lines precisely occur at the frequencies of M 2 ${\mathrm{M}}_{2}$ S 1 ${\mathrm{S}}_{1}$ and M 2 ${\mathrm{M}}_{2}$  +  S 1 ${\mathrm{S}}_{1}$ .

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对电离层电子密度时间序列的地基观测表明,在月球潮汐成分 O 1 ${\mathrm{O}}_{1}$ (25.82 小时)和 MK 3 ${\text{MK}}_{3}$ (8.18 小时)的周期存在光谱成分。目前还不清楚这些变化是由从地表传播到电离层的 O 1 ${\mathrm{O}}_{1}$ 和 MK 3 ${text\{MK}}_{3}$ 潮汐引起的,还是由半日月潮 M 2 ${\mathrm{M}}_{2}$ 与电离的日变化(S 1 ${\mathrm{S}}_{1}$ )的非线性相互作用引起的。利用美国国家科学基金会国家大气研究中心的热层-电离层-大气层电动力学大气环流模式(TIME-GCM)进行了模拟。在 TIME-GCM 下边界的平流层中,引入了大气半月潮 M 2 ${{mathrm{M}}_{2}$ 的信号。The TIME-GCM simulation of January–February 2009 shows that the electron density variation in the equatorial F 2 ${\mathrm{F}}_{2}$ region contains not only a spectral component of the M 2 ${\mathrm{M}}_{2}$ period but also spectral components of the O 1 ${\mathrm{O}}_{1}$ and MK 3 ${\text{MK}}_{3}$ periods fulfilling the nonlinear interaction resonance condition for the frequencies of the wave triads ( M 2 ${\mathrm{M}}_{2}$ + S 1 ${\mathrm{S}}_{1}$ = MK 3 ${\text{MK}}_{3}$ ) and ( M 2 ${\mathrm{M}}_{2}$ − S 1 ${\mathrm{S}}_{1}$ = O 1 ${\mathrm{O}}_{1}$ ).这些波三元组的带状波数也满足非线性相互作用共振条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
期刊最新文献
The Spreading of Magnetic Reconnection X-Line in Particle-In-Cell Simulations– Mechanism and the Effect of Drift-Kink Instability A 3-D FDTD Methodology for Modeling the Propagation of VLF Whistler Mode PLHR Waves Through the Ionosphere “Polar” Substorms During Slow Solar Wind Characteristics of Wave-Particle Power Transfer as a Function of Electron Pitch Angle in Nonlinear Frequency Chirping Jupiter's Auroral Ionosphere: Juno Microwave Radiometer Observations of Energetic Electron Precipitation Events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1