Hand Gesture Recognition Using Frequency-Modulated Continuous Wave Radar on Tactile Displays for the Visually Impaired

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-12-15 DOI:10.1002/aisy.202400663
Ahmed Hamza, Santosh Kumar Prabhulingaiah, Pegah Pezeshkpour, Bastian E. Rapp
{"title":"Hand Gesture Recognition Using Frequency-Modulated Continuous Wave Radar on Tactile Displays for the Visually Impaired","authors":"Ahmed Hamza,&nbsp;Santosh Kumar Prabhulingaiah,&nbsp;Pegah Pezeshkpour,&nbsp;Bastian E. Rapp","doi":"10.1002/aisy.202400663","DOIUrl":null,"url":null,"abstract":"<p>Touchscreens are essential parts of many electronics in daily lives of sighted people in the digital information era. On the other hand, visually impaired users rely on tactile displays as one of the key communication devices to interact with the digital world. However, due to their working mechanism and the uneven surface of tactile displays, one of the key features of screens for sighted users is surprisingly challenging to implement: precision touch input. To overcome this, a hand gesture recognition system is developed using a frequency-modulated continuous wave millimeter-wave radar. A multifeature encoder method is used to obtain the range and velocity information from the radar to translate the data into spectrogram images. Gesture recognition is implemented for common input gestures: single/double-click, swipe-right/left, scroll-up/down, zoom-in/out, and rotate-anticlockwise/clockwise. The gesture recognition and classification are based on machine learning, support vector machines, deep learning, and convolutional neural network approaches. The chosen model You-Only-Look-Once (YOLOv8) shows a high accuracy of 97.1% by iterating only 30 epochs with only 500 collected data samples per gesture. This research paves the way toward using radar sensors not only for tactile displays but also for other digital devices in human–computer interaction.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400663","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Touchscreens are essential parts of many electronics in daily lives of sighted people in the digital information era. On the other hand, visually impaired users rely on tactile displays as one of the key communication devices to interact with the digital world. However, due to their working mechanism and the uneven surface of tactile displays, one of the key features of screens for sighted users is surprisingly challenging to implement: precision touch input. To overcome this, a hand gesture recognition system is developed using a frequency-modulated continuous wave millimeter-wave radar. A multifeature encoder method is used to obtain the range and velocity information from the radar to translate the data into spectrogram images. Gesture recognition is implemented for common input gestures: single/double-click, swipe-right/left, scroll-up/down, zoom-in/out, and rotate-anticlockwise/clockwise. The gesture recognition and classification are based on machine learning, support vector machines, deep learning, and convolutional neural network approaches. The chosen model You-Only-Look-Once (YOLOv8) shows a high accuracy of 97.1% by iterating only 30 epochs with only 500 collected data samples per gesture. This research paves the way toward using radar sensors not only for tactile displays but also for other digital devices in human–computer interaction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Issue Information Ecofriendly Printed Wood-Based Honey-Gated Transistors for Artificial Synapse Emulation Magnetic Actuation for Mechanomedicine Hand Gesture Recognition Using Frequency-Modulated Continuous Wave Radar on Tactile Displays for the Visually Impaired Compensated Current Mirror Neuron Circuits for Linear Charge Integration with Ultralow Static Power in Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1