Investigation on Artificial Intelligence Hardware Architecture Design Based on Logic-in-Memory Ferroelectric Fin Field-Effect Transistor at Sub-3nm Technology Nodes
Changho Ra, Huijun Kim, Juhwan Park, Gwanoh Youn, Uyong Lee, Junsu Heo, Chester Sungchung Park, Jongwook Jeon
{"title":"Investigation on Artificial Intelligence Hardware Architecture Design Based on Logic-in-Memory Ferroelectric Fin Field-Effect Transistor at Sub-3nm Technology Nodes","authors":"Changho Ra, Huijun Kim, Juhwan Park, Gwanoh Youn, Uyong Lee, Junsu Heo, Chester Sungchung Park, Jongwook Jeon","doi":"10.1002/aisy.202400370","DOIUrl":null,"url":null,"abstract":"<p>With the advancement of artificial intelligence and internet of things, logic-in-memory (LiM) technology has garnered attention. This article presents research on LiM utilizing ferroelectric fin field-effect transistor (FinFET). Herein, the LiM characteristics of FinFET with hafnia-based switchable ferroelectric gate stack applied to the sub-3 nm future technology node are analyzed. This analysis is extended to the system level and its characteristics are observed. A compact model of the ferroelectric capacitor using Verilog-A is developed and the operation of LiM circuits such as 1-bit full adder, ternary content-addressable memory, and flip-flop by combining FinFET characteristics based on atomistic simulation with fabricated silicon-doped hafnium oxide characteristics is analyzed. Furthermore, by applying these ferroelectric devices, a power consumption reduction of 85.2% in the convolutional neural network accelerator at the system level is observed.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400370","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the advancement of artificial intelligence and internet of things, logic-in-memory (LiM) technology has garnered attention. This article presents research on LiM utilizing ferroelectric fin field-effect transistor (FinFET). Herein, the LiM characteristics of FinFET with hafnia-based switchable ferroelectric gate stack applied to the sub-3 nm future technology node are analyzed. This analysis is extended to the system level and its characteristics are observed. A compact model of the ferroelectric capacitor using Verilog-A is developed and the operation of LiM circuits such as 1-bit full adder, ternary content-addressable memory, and flip-flop by combining FinFET characteristics based on atomistic simulation with fabricated silicon-doped hafnium oxide characteristics is analyzed. Furthermore, by applying these ferroelectric devices, a power consumption reduction of 85.2% in the convolutional neural network accelerator at the system level is observed.