Rational Design of Black Polyimide With High Comprehensive Properties Derived From DBF-Based Chromophore

IF 3.9 3区 化学 Q2 POLYMER SCIENCE Journal of Polymer Science Pub Date : 2024-12-19 DOI:10.1002/pol.20240899
Yiwu Liu, Huipeng Li, Jinghua Tan, Jie Huang, Jiazhen Yuan, Xueyuan Liu, Jieping Guo, Di Wu, Yue Chen
{"title":"Rational Design of Black Polyimide With High Comprehensive Properties Derived From DBF-Based Chromophore","authors":"Yiwu Liu,&nbsp;Huipeng Li,&nbsp;Jinghua Tan,&nbsp;Jie Huang,&nbsp;Jiazhen Yuan,&nbsp;Xueyuan Liu,&nbsp;Jieping Guo,&nbsp;Di Wu,&nbsp;Yue Chen","doi":"10.1002/pol.20240899","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The market need for black polyimide (BPI) in microelectronics and optoelectronics has significantly increased. However, the current BPIs suffer from issues such as inadequate masking effectiveness, inferior electrical performance, and dimensional stability. 3,6-Di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DBF) is a typical dye that possesses excellent light-absorbing ability. In this work, a novel diamine (DBFRFPDA) with DBF-derived chromophores was successfully synthesized. Utilizing this newly developed diamine and pyromellitic dianhydride (PMDA), an inherent BPI (DBFRFPPI) was prepared. The spectral absorption of DBFRFPPI is greatly widened and red-shifted with the incorporation of DBF-based chromophores, thus achieving an exceptionally dark hue. DBFRFPPI exhibits a high cut-off wavelength (<i>λ</i>\n <sub>cut</sub>) of 680 nm and a small CIE-Lab coordinate <i>L*</i> of 1.02. Moreover, DBFRFPPI shows a small coefficient of thermal expansion (CTE) and demonstrates outstanding thermal and electrical characteristics. The electronic transitions of DBFRFPPI were investigated using density functional theory. The findings demonstrate that the superior light absorption of DBFRFPPI is chiefly derived from the HOMO→LUMO+1 transition, which takes place within the DBF-based chromophore moiety. This intrinsic BPI with highly comprehensive properties has important applications in microelectronic fields, especially in flexible copper-clad laminate (FCCL).</p>\n </div>","PeriodicalId":16888,"journal":{"name":"Journal of Polymer Science","volume":"63 4","pages":"898-908"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20240899","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The market need for black polyimide (BPI) in microelectronics and optoelectronics has significantly increased. However, the current BPIs suffer from issues such as inadequate masking effectiveness, inferior electrical performance, and dimensional stability. 3,6-Di(furan-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DBF) is a typical dye that possesses excellent light-absorbing ability. In this work, a novel diamine (DBFRFPDA) with DBF-derived chromophores was successfully synthesized. Utilizing this newly developed diamine and pyromellitic dianhydride (PMDA), an inherent BPI (DBFRFPPI) was prepared. The spectral absorption of DBFRFPPI is greatly widened and red-shifted with the incorporation of DBF-based chromophores, thus achieving an exceptionally dark hue. DBFRFPPI exhibits a high cut-off wavelength (λ cut) of 680 nm and a small CIE-Lab coordinate L* of 1.02. Moreover, DBFRFPPI shows a small coefficient of thermal expansion (CTE) and demonstrates outstanding thermal and electrical characteristics. The electronic transitions of DBFRFPPI were investigated using density functional theory. The findings demonstrate that the superior light absorption of DBFRFPPI is chiefly derived from the HOMO→LUMO+1 transition, which takes place within the DBF-based chromophore moiety. This intrinsic BPI with highly comprehensive properties has important applications in microelectronic fields, especially in flexible copper-clad laminate (FCCL).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Polymer Science
Journal of Polymer Science POLYMER SCIENCE-
CiteScore
6.30
自引率
5.90%
发文量
264
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology.
期刊最新文献
Issue Information - Cover Description Issue Information - Cover Description Issue Information - Cover Description Issue Information - Cover Description Agglomeration Behavior and Kinetics of Polybutadiene Particles in the Polymer Agglomeration Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1