{"title":"An Electrochemical Platform Constructed with Tantalum Nanoparticles and Graphene Nanoplatelets for the Voltammetric Sensing of Ritodrine","authors":"Ebru Beyyavaş, Mehmet Aslanoglu","doi":"10.1002/elan.12029","DOIUrl":null,"url":null,"abstract":"<p>Tantalum (Ta) nanoparticles were synthesized by the reaction of lithium with pyridine solution of TaCl<sub>5</sub> via ultrasonication. Then, Ta nanoparticles and graphene nanoplatelets (GNP) were utilized to construct a novel sensing platform for the voltammetric detection of ritodrine. The electrochemically active surface area and charge transfer resistance (<i>R</i><sub>ct</sub>) of the proposed electrochemical platform (GCE/GNP@Ta) were determined to be 0.336 cm<sup>2</sup> and 86 Ω. This indicates that proposed material can be considered as a promising material in sensing applications. The performance of GCE/GNP@Ta was examined for ritodrine oxidation process and compared with other electrodes. GCE/GNP@Ta improved the voltammetric behavior of ritodrine and exhibited an oxidation peak potential (<i>E</i><sub>p</sub>) of 0.71 V, which is less than that of other electrodes. The potential shift and peak improvement of ritodrine indicated the higher electrocatalytic activity of electrode modified with GNP@Ta. GCE/GNP@Ta exhibited a working range from 4.0 × 10<sup>−8</sup> to 1.5 × 10<sup>−6</sup> M with a detection limit of 1.0 × 10<sup>−9</sup> M (3<i>s</i><sub>b</sub>/m) for ritodrine. The voltammetric measurements yielded excellent accuracy and high precision for ritodrine in biological samples.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"37 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elan.12029","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tantalum (Ta) nanoparticles were synthesized by the reaction of lithium with pyridine solution of TaCl5 via ultrasonication. Then, Ta nanoparticles and graphene nanoplatelets (GNP) were utilized to construct a novel sensing platform for the voltammetric detection of ritodrine. The electrochemically active surface area and charge transfer resistance (Rct) of the proposed electrochemical platform (GCE/GNP@Ta) were determined to be 0.336 cm2 and 86 Ω. This indicates that proposed material can be considered as a promising material in sensing applications. The performance of GCE/GNP@Ta was examined for ritodrine oxidation process and compared with other electrodes. GCE/GNP@Ta improved the voltammetric behavior of ritodrine and exhibited an oxidation peak potential (Ep) of 0.71 V, which is less than that of other electrodes. The potential shift and peak improvement of ritodrine indicated the higher electrocatalytic activity of electrode modified with GNP@Ta. GCE/GNP@Ta exhibited a working range from 4.0 × 10−8 to 1.5 × 10−6 M with a detection limit of 1.0 × 10−9 M (3sb/m) for ritodrine. The voltammetric measurements yielded excellent accuracy and high precision for ritodrine in biological samples.
期刊介绍:
Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications.
Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.