Panaxadiol Attenuates Neuronal Oxidative Stress and Apoptosis in Cerebral Ischemia/Reperfusion Injury via Regulation of the JAK3/STAT3/HIF-1α Signaling Pathway

IF 4.8 1区 医学 Q1 NEUROSCIENCES CNS Neuroscience & Therapeutics Pub Date : 2025-02-17 DOI:10.1111/cns.70233
Jiabin Zhou, Yu Lei, Shilin Zhang, Yuhan Liu, Dongye Yi
{"title":"Panaxadiol Attenuates Neuronal Oxidative Stress and Apoptosis in Cerebral Ischemia/Reperfusion Injury via Regulation of the JAK3/STAT3/HIF-1α Signaling Pathway","authors":"Jiabin Zhou,&nbsp;Yu Lei,&nbsp;Shilin Zhang,&nbsp;Yuhan Liu,&nbsp;Dongye Yi","doi":"10.1111/cns.70233","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Cerebral ischemic stroke (CIS) is a debilitating neurological condition lacking specific treatments. Cerebral ischemia/reperfusion injury (CIRI) is a critical pathological process in CIS.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>This study aimed to explore the protective effects of panaxadiol (PD) against oxidative stress-induced neuronal apoptosis in CIS/CIRI and its underlying mechanisms.</p>\n </section>\n \n <section>\n \n <h3> Method</h3>\n \n <p>An MCAO mouse model was established to investigate the therapeutic effects of PD in vivo. Network pharmacology and molecular docking techniques were used to predict PD's anti-CIS targets. The protective effects of PD were further validated in vitro using oxygen–glucose deprivation/reoxygenation (OGD/R)-treated HT22 cells. Finally, core targets were verified through combined in vivo and in vitro experiments to elucidate the mechanisms of PD in treating CIS.</p>\n </section>\n \n <section>\n \n <h3> Result</h3>\n \n <p>PD exhibited significant neuroprotective activity, demonstrated by restoration of behavioral performance, reduced infarct volume, and decreased neuronal apoptosis in mice. Network pharmacology analysis identified 24 overlapping target genes between PD and CIS-related targets. The hub genes, PTGS2, SERPINE1, ICAM-1, STAT3, MMP3, HMOX1, and NOS3, were associated with the HIF-1α pathway, which may play a crucial role in PD's anti-CIS effects. Molecular docking confirmed the stable binding of PD to these hub genes. Both in vitro and in vivo experiments further confirmed that PD significantly mitigates neuronal apoptosis and oxidative stress induced by CIS/CIRI.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>PD significantly counteracts CIS/CIRI by modulating the JAK3/STAT3/HIF-1α signaling pathway, making it a promising therapeutic agent for treating CIS/CIRI.</p>\n </section>\n </div>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"31 2","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cns.70233","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.70233","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Cerebral ischemic stroke (CIS) is a debilitating neurological condition lacking specific treatments. Cerebral ischemia/reperfusion injury (CIRI) is a critical pathological process in CIS.

Purpose

This study aimed to explore the protective effects of panaxadiol (PD) against oxidative stress-induced neuronal apoptosis in CIS/CIRI and its underlying mechanisms.

Method

An MCAO mouse model was established to investigate the therapeutic effects of PD in vivo. Network pharmacology and molecular docking techniques were used to predict PD's anti-CIS targets. The protective effects of PD were further validated in vitro using oxygen–glucose deprivation/reoxygenation (OGD/R)-treated HT22 cells. Finally, core targets were verified through combined in vivo and in vitro experiments to elucidate the mechanisms of PD in treating CIS.

Result

PD exhibited significant neuroprotective activity, demonstrated by restoration of behavioral performance, reduced infarct volume, and decreased neuronal apoptosis in mice. Network pharmacology analysis identified 24 overlapping target genes between PD and CIS-related targets. The hub genes, PTGS2, SERPINE1, ICAM-1, STAT3, MMP3, HMOX1, and NOS3, were associated with the HIF-1α pathway, which may play a crucial role in PD's anti-CIS effects. Molecular docking confirmed the stable binding of PD to these hub genes. Both in vitro and in vivo experiments further confirmed that PD significantly mitigates neuronal apoptosis and oxidative stress induced by CIS/CIRI.

Conclusion

PD significantly counteracts CIS/CIRI by modulating the JAK3/STAT3/HIF-1α signaling pathway, making it a promising therapeutic agent for treating CIS/CIRI.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CNS Neuroscience & Therapeutics
CNS Neuroscience & Therapeutics 医学-神经科学
CiteScore
7.30
自引率
12.70%
发文量
240
审稿时长
2 months
期刊介绍: CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.
期刊最新文献
Melatonin Regulates Glymphatic Function to Affect Cognitive Deficits, Behavioral Issues, and Blood–Brain Barrier Damage in Mice After Intracerebral Hemorrhage: Potential Links to Circadian Rhythms Targeting LncRNA-Vof16: A Novel Therapeutic Strategy for Neuropathic Pain Relief Xiao-Chai-Hu-Tang Ameliorates Depressive Symptoms via Modulating Neuro-Endocrine Network in Chronic Unpredictable Mild Stress-Induced Mice Function-Specific Localization in the Supplementary Motor Area: A Potential Effective Target for Tourette Syndrome Metrnl/C-KIT Axis Attenuates Early Brain Injury Following Subarachnoid Hemorrhage by Inhibiting Neuronal Ferroptosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1