Predicting Solute Diffusivity and Transport Kinetics in Polymers Using Quantile Random Forests

IF 3.6 3区 化学 Q2 POLYMER SCIENCE Journal of Polymer Science Pub Date : 2024-12-24 DOI:10.1002/pol.20240896
Robert M. Elder, Kaleb J. Duelge, Joshua A. Young, David D. Simon, David M. Saylor
{"title":"Predicting Solute Diffusivity and Transport Kinetics in Polymers Using Quantile Random Forests","authors":"Robert M. Elder,&nbsp;Kaleb J. Duelge,&nbsp;Joshua A. Young,&nbsp;David D. Simon,&nbsp;David M. Saylor","doi":"10.1002/pol.20240896","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Additives and contaminants in polymer-based medical devices may leach into patients, posing a potential health risk. Physics-based mass transport models can estimate the leaching kinetics, but they require upper-bound estimates of solute diffusivity <span></span><math>\n \n <semantics>\n \n <mrow>\n \n <mi>D</mi>\n </mrow>\n </semantics>\n </math> in the polymer. Experiments to measure <span></span><math>\n \n <semantics>\n \n <mrow>\n \n <mi>D</mi>\n </mrow>\n </semantics>\n </math> can be costly and time-consuming. Alternatives to estimate <span></span><math>\n \n <semantics>\n \n <mrow>\n \n <mi>D</mi>\n </mrow>\n </semantics>\n </math> exist, but they suffer from several drawbacks, such as requiring experimental data to calibrate or specialized knowledge to apply, being limited to certain polymers, or being too time-consuming given the plethora of polymer/solute combinations in devices. Here, we leverage a large database of diffusivity measurements and apply a machine learning method—quantile random forests (QRF)—to predict bounds on <span></span><math>\n \n <semantics>\n \n <mrow>\n \n <mi>D</mi>\n </mrow>\n </semantics>\n </math> for arbitrary polymer/solute combinations, using only the solute structure and readily available polymer properties (glass transition temperature <span></span><math>\n \n <semantics>\n \n <mrow>\n \n <msub>\n \n <mi>T</mi>\n \n <mi>g</mi>\n </msub>\n </mrow>\n </semantics>\n </math> and density). The most influential factors for determining <span></span><math>\n \n <semantics>\n \n <mrow>\n \n <mi>D</mi>\n </mrow>\n </semantics>\n </math> are these polymer properties and several descriptors related to solute size (e.g., molecular weight <span></span><math>\n \n <semantics>\n \n <mrow>\n \n <msub>\n \n <mi>M</mi>\n \n <mi>w</mi>\n </msub>\n </mrow>\n </semantics>\n </math>), structure, and interactions. Note that application of the model is limited to the applicability domain defined herein and polymers with relatively low fractional-free-volume. We demonstrate the ability of the model to predict <span></span><math>\n \n <semantics>\n \n <mrow>\n \n <mi>D</mi>\n </mrow>\n </semantics>\n </math> and diffusion-limited transport kinetics, where it compares favorably to other available methods while also overcoming the aforementioned drawbacks.</p>\n </div>","PeriodicalId":16888,"journal":{"name":"Journal of Polymer Science","volume":"63 4","pages":"1010-1022"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20240896","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Additives and contaminants in polymer-based medical devices may leach into patients, posing a potential health risk. Physics-based mass transport models can estimate the leaching kinetics, but they require upper-bound estimates of solute diffusivity D in the polymer. Experiments to measure D can be costly and time-consuming. Alternatives to estimate D exist, but they suffer from several drawbacks, such as requiring experimental data to calibrate or specialized knowledge to apply, being limited to certain polymers, or being too time-consuming given the plethora of polymer/solute combinations in devices. Here, we leverage a large database of diffusivity measurements and apply a machine learning method—quantile random forests (QRF)—to predict bounds on D for arbitrary polymer/solute combinations, using only the solute structure and readily available polymer properties (glass transition temperature T g and density). The most influential factors for determining D are these polymer properties and several descriptors related to solute size (e.g., molecular weight M w ), structure, and interactions. Note that application of the model is limited to the applicability domain defined herein and polymers with relatively low fractional-free-volume. We demonstrate the ability of the model to predict D and diffusion-limited transport kinetics, where it compares favorably to other available methods while also overcoming the aforementioned drawbacks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用分位数随机森林预测聚合物中溶质扩散和输运动力学
聚合物医疗器械中的添加剂和污染物可能渗入患者体内,构成潜在的健康风险。基于物理的质量输运模型可以估计浸出动力学,但它们需要聚合物中溶质扩散系数D的上限估计。测量D的实验既昂贵又耗时。估计D的替代方法是存在的,但它们存在一些缺点,例如需要实验数据来校准或需要专业知识来应用,限于某些聚合物,或者由于设备中聚合物/溶质组合过多而过于耗时。在这里,我们利用一个大型的扩散度测量数据库,并应用机器学习方法——分位数随机森林(QRF)——来预测任意聚合物/溶质组合的D界限。仅使用溶质结构和易于获得的聚合物性质(玻璃化转变温度tg和密度)。决定D的最重要因素是这些聚合物性质和与溶质尺寸有关的几个描述符(例如,分子量M w),结构和相互作用。请注意,该模型的应用仅限于本文定义的适用领域和具有相对低分数自由体积的聚合物。我们证明了该模型预测D和扩散限制输运动力学的能力,与其他可用方法相比,它更有利,同时也克服了上述缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Polymer Science
Journal of Polymer Science POLYMER SCIENCE-
CiteScore
6.30
自引率
5.90%
发文量
264
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology.
期刊最新文献
Issue Information - Cover Description Issue Information - Cover Description Issue Information - Cover Description Issue Information - Cover Description D-Optimal Design for Enzymatic Ring-Opening Polymerization of ε-Caprolactone: Toward Sustainable Polyester Synthesis Using Biobased Solvents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1