Hsa-miR-526b-5p Regulates the Sensitivity of Colorectal Cancer to 5-Fluorouracil by Targeting TP53 in Organoid Models.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Genetics Pub Date : 2025-02-14 DOI:10.1007/s10528-025-11045-y
Lizhe Huang, Cun Liao, Zuming Xiong, Zhongyang Chen, Sen Zhang
{"title":"Hsa-miR-526b-5p Regulates the Sensitivity of Colorectal Cancer to 5-Fluorouracil by Targeting TP53 in Organoid Models.","authors":"Lizhe Huang, Cun Liao, Zuming Xiong, Zhongyang Chen, Sen Zhang","doi":"10.1007/s10528-025-11045-y","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to explore the mechanisms through which microRNAs (miRNAs) regulate 5-fluorouracil (5-FU) sensitivity in colorectal cancer (CRC) using organoid models. Fresh tissue samples from CRC tumors were collected, and CRC organoids were isolated and cultured. The consistency between CRC organoids and their derived tissues was validated. CRC organoids were treated with 5-FU, and ATP activity was measured. High-throughput sequencing of CRC organoids, combined with Gene Expression Omnibus (GEO) data analysis, was performed to examine miRNA expression following 5-FU treatment. Next, we investigated the cellular function of miR-526b-5p in CRC organoids and cells. Dual-luciferase reporter assays validated the binding of miR-526b-5p to the 3' UTR of TP53 mRNA. We successfully established CRC organoids that exhibited characteristics consistent with their source tissues. 5-FU treatment suppressed the proliferation and ATP activity of CRC organoids. High-throughput sequencing of CRC organoids, combined with GEO data analysis and quantitative reverse transcription polymerase chain reaction (qRT-PCR) validation, revealed that hsa-miR-526b-5p levels were elevated following 5-FU treatment in CRC organoids and cells. Furthermore, hsa-miR-526b-5p was upregulated in CRC tissues compared to adjacent normal tissues, correlating with poor survival in CRC patients. Overexpression of hsa-miR-526b-5p mitigated the inhibitory effects of 5-FU on CRC organoid proliferation, migration, invasion, and ferroptosis. In contrast, silencing of hsa-miR-526b-5p impaired cell function and ferroptosis. Additionally, overexpression of hsa-miR-526b-5p decreased TP53 mRNA and protein levels while increasing the expression of SLC7A11 mRNA and protein. Silencing of hsa-miR-526b-5p resulted in the opposite effect. hsa-miR-526b-5p directly targeted and inhibited TP53 expression. Overexpression of TP53 diminished the promotive effect of hsa-miR-526b-5p on ferroptosis-related proteins GPX4 and SLC7A11, whereas inhibition of TP53 reversed the impact of hsa-miR-526b-5p silencing. Our study demonstrates that hsa-miR-526b-5p targets TP53 to regulate 5-FU sensitivity in CRC through the ferroptosis pathway based on CRC organoid models.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11045-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to explore the mechanisms through which microRNAs (miRNAs) regulate 5-fluorouracil (5-FU) sensitivity in colorectal cancer (CRC) using organoid models. Fresh tissue samples from CRC tumors were collected, and CRC organoids were isolated and cultured. The consistency between CRC organoids and their derived tissues was validated. CRC organoids were treated with 5-FU, and ATP activity was measured. High-throughput sequencing of CRC organoids, combined with Gene Expression Omnibus (GEO) data analysis, was performed to examine miRNA expression following 5-FU treatment. Next, we investigated the cellular function of miR-526b-5p in CRC organoids and cells. Dual-luciferase reporter assays validated the binding of miR-526b-5p to the 3' UTR of TP53 mRNA. We successfully established CRC organoids that exhibited characteristics consistent with their source tissues. 5-FU treatment suppressed the proliferation and ATP activity of CRC organoids. High-throughput sequencing of CRC organoids, combined with GEO data analysis and quantitative reverse transcription polymerase chain reaction (qRT-PCR) validation, revealed that hsa-miR-526b-5p levels were elevated following 5-FU treatment in CRC organoids and cells. Furthermore, hsa-miR-526b-5p was upregulated in CRC tissues compared to adjacent normal tissues, correlating with poor survival in CRC patients. Overexpression of hsa-miR-526b-5p mitigated the inhibitory effects of 5-FU on CRC organoid proliferation, migration, invasion, and ferroptosis. In contrast, silencing of hsa-miR-526b-5p impaired cell function and ferroptosis. Additionally, overexpression of hsa-miR-526b-5p decreased TP53 mRNA and protein levels while increasing the expression of SLC7A11 mRNA and protein. Silencing of hsa-miR-526b-5p resulted in the opposite effect. hsa-miR-526b-5p directly targeted and inhibited TP53 expression. Overexpression of TP53 diminished the promotive effect of hsa-miR-526b-5p on ferroptosis-related proteins GPX4 and SLC7A11, whereas inhibition of TP53 reversed the impact of hsa-miR-526b-5p silencing. Our study demonstrates that hsa-miR-526b-5p targets TP53 to regulate 5-FU sensitivity in CRC through the ferroptosis pathway based on CRC organoid models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
期刊最新文献
Geniposide Inhibits Non-Small Cell Lung Cancer by Regulating Proliferation, Apoptosis, Invasion, Migration, Epithelial-Mesenchymal Transition, and Cancer Stem-Like Cell Property Via Wnt/β-Catenin Pathway. LncIMF1 Promotes Adipogenesis of Porcine Intramuscular Preadipocyte by Sponging miR-187. Unlocking the Yield & Quality Potential of Peppermint (M. piperita L.) for the Study of Genetic Variability Through Induced Mutagenesis. Hsa-miR-526b-5p Regulates the Sensitivity of Colorectal Cancer to 5-Fluorouracil by Targeting TP53 in Organoid Models. Mechanism of Curcumin in the Treatment of Intrauterine Adhesions Based on Network Pharmacology, Molecular docking, and Experimental Validation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1