Antibacterial and physicomechanical properties of cellulosic nonwovens functionalized with chitosan: a study on interaction effects of influencing factors and assessment methods.

IF 4.3 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Bioresources and Bioprocessing Pub Date : 2025-02-15 DOI:10.1186/s40643-025-00843-2
Esubalew Kasaw Gebeyehu, Rekha Shresth, Tonmoy Saha, Jenni Tienaho, Ulla Jauhiainen, Ali Amin Tarhini, Ali Reza Tehrani-Bagha
{"title":"Antibacterial and physicomechanical properties of cellulosic nonwovens functionalized with chitosan: a study on interaction effects of influencing factors and assessment methods.","authors":"Esubalew Kasaw Gebeyehu, Rekha Shresth, Tonmoy Saha, Jenni Tienaho, Ulla Jauhiainen, Ali Amin Tarhini, Ali Reza Tehrani-Bagha","doi":"10.1186/s40643-025-00843-2","DOIUrl":null,"url":null,"abstract":"<p><p>The growing demand for antimicrobial textiles and environmental concerns over synthetic agents have driven interest in biobased agents like chitosan, an eco-friendly alternative reported with variable effectiveness on textiles. This research investigates the effects of chitosan's molecular weight, concentration, treatment method, and their interaction effects on the antibacterial and physicomechanical properties of cellulosic nonwovens. The role of culture medium dynamics in antibacterial testing was also examined. Chitosan with low (30 kDa), medium (250 kDa) and high (2100 kDa) molecular weights at concentrations of 1 to 15 g/L was applied using pad-dry and dip-dry methods, with dip coating resulting in higher chitosan deposition. Antibacterial activity against Escherichia coli (E. coli) was assessed using three methods: agar diffusion, a luminescent bacterial biosensor assay, and log reduction of colony-forming units (CFU/mL) in a time-kill test. While the first two test methods showed no antibacterial effect, CFU/mL revealed significant activity with interaction effects showing that the dip-coated, 30 kDa chitosan above a concentration of 5 g/L achieved complete bacterial reduction. The enhanced antibacterial performance of chitosan-coated cellulosic substrates, compared to chitosan in a culture medium, highlighted the role of cellulosic nonwoven in boosting antibacterial effectiveness, likely through improved contact and interaction with bacterial cells. The study demonstrated that chitosan-treated cellulosic nonwovens, particularly with dip-dry coating altered tensile strength and increased the bending resistance and bending stiffness.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"11"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-025-00843-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for antimicrobial textiles and environmental concerns over synthetic agents have driven interest in biobased agents like chitosan, an eco-friendly alternative reported with variable effectiveness on textiles. This research investigates the effects of chitosan's molecular weight, concentration, treatment method, and their interaction effects on the antibacterial and physicomechanical properties of cellulosic nonwovens. The role of culture medium dynamics in antibacterial testing was also examined. Chitosan with low (30 kDa), medium (250 kDa) and high (2100 kDa) molecular weights at concentrations of 1 to 15 g/L was applied using pad-dry and dip-dry methods, with dip coating resulting in higher chitosan deposition. Antibacterial activity against Escherichia coli (E. coli) was assessed using three methods: agar diffusion, a luminescent bacterial biosensor assay, and log reduction of colony-forming units (CFU/mL) in a time-kill test. While the first two test methods showed no antibacterial effect, CFU/mL revealed significant activity with interaction effects showing that the dip-coated, 30 kDa chitosan above a concentration of 5 g/L achieved complete bacterial reduction. The enhanced antibacterial performance of chitosan-coated cellulosic substrates, compared to chitosan in a culture medium, highlighted the role of cellulosic nonwoven in boosting antibacterial effectiveness, likely through improved contact and interaction with bacterial cells. The study demonstrated that chitosan-treated cellulosic nonwovens, particularly with dip-dry coating altered tensile strength and increased the bending resistance and bending stiffness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioresources and Bioprocessing
Bioresources and Bioprocessing BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
8.70%
发文量
118
审稿时长
13 weeks
期刊介绍: Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology
期刊最新文献
Antibacterial and physicomechanical properties of cellulosic nonwovens functionalized with chitosan: a study on interaction effects of influencing factors and assessment methods. Environmental friendly warp yarn coating from feather wastes with enhanced toughness and tenacity via thiol-ene click chemistry grafting modification. Tea leaf exosome-like nanoparticles (TELNs) improve oleic acid-induced lipid metabolism by regulating miRNAs in HepG-2 cells. Production of HMF-derivatives from wine residues using Saccharomyces cerevisiae as whole-cell biocatalyst. Mining versatile feruloyl esterases: phylogenetic classification, structural features, and deep learning model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1