KDM5C and KDM5D mutations have different consequences in clear cell renal cell carcinoma cells.

IF 5.2 1区 生物学 Q1 BIOLOGY Communications Biology Pub Date : 2025-02-15 DOI:10.1038/s42003-025-07695-8
Marvin Müller, Kyra Zodel, Behnaz A Abhari, Francesca Cuomo, Sheikh Nizamuddin, Patrick Metzger, Melanie Boerries, H T Marc Timmers, Ian J Frew
{"title":"KDM5C and KDM5D mutations have different consequences in clear cell renal cell carcinoma cells.","authors":"Marvin Müller, Kyra Zodel, Behnaz A Abhari, Francesca Cuomo, Sheikh Nizamuddin, Patrick Metzger, Melanie Boerries, H T Marc Timmers, Ian J Frew","doi":"10.1038/s42003-025-07695-8","DOIUrl":null,"url":null,"abstract":"<p><p>KDM5C is commonly mutated in clear cell renal cell carcinomas (ccRCC) in men but rarely in women. Introducing KDM5C mutation into two male and two female KDM5C wild-type ccRCC cell lines caused different phenotypes and non-overlapping transcriptional consequences, indicative of context-dependent functions of KDM5C. We identify that loss of the Y chromosome, harbouring the KDM5C homologue KDM5D, occurs in most male KDM5C mutant ccRCCs. Mutation of KDM5D in male 786-O cells prevented xenograft tumour formation and this phenotype was unexpectedly rescued by co-mutation of KDM5C, consistent with the co-occurrence of KDM5C mutation and loss of the Y chromosome in ccRCC. Transcriptional analyses showed that KDM5C and KDM5D regulate the expression of both overlapping as well as distinct sets of genes. While KDM5C and KDM5D bind to at least some overlapping genomic sites, gene expression changes induced by KDM5C or KDM5D mutation are apparently unrelated to the direct functions of these proteins at the relevant gene promoters or enhancers. Our findings identify similarities and differences in KDM5C and KDM5D functions, challenging the idea that KDM5D in male cells functions equivalently to the second KDM5C allele in female cells, and implicate an interplay between KDM5C mutation and Y chromosome loss in ccRCC development in men.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"244"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07695-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

KDM5C is commonly mutated in clear cell renal cell carcinomas (ccRCC) in men but rarely in women. Introducing KDM5C mutation into two male and two female KDM5C wild-type ccRCC cell lines caused different phenotypes and non-overlapping transcriptional consequences, indicative of context-dependent functions of KDM5C. We identify that loss of the Y chromosome, harbouring the KDM5C homologue KDM5D, occurs in most male KDM5C mutant ccRCCs. Mutation of KDM5D in male 786-O cells prevented xenograft tumour formation and this phenotype was unexpectedly rescued by co-mutation of KDM5C, consistent with the co-occurrence of KDM5C mutation and loss of the Y chromosome in ccRCC. Transcriptional analyses showed that KDM5C and KDM5D regulate the expression of both overlapping as well as distinct sets of genes. While KDM5C and KDM5D bind to at least some overlapping genomic sites, gene expression changes induced by KDM5C or KDM5D mutation are apparently unrelated to the direct functions of these proteins at the relevant gene promoters or enhancers. Our findings identify similarities and differences in KDM5C and KDM5D functions, challenging the idea that KDM5D in male cells functions equivalently to the second KDM5C allele in female cells, and implicate an interplay between KDM5C mutation and Y chromosome loss in ccRCC development in men.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
期刊最新文献
Human cytomegalovirus UL82 promotes cell cycle progression of colorectal cancer by upregulating AGR2. Ecological change and conflict reduction led to a social circulatory system in ants. CPT1A-mediated MFF succinylation promotes stemness maintenance in ovarian cancer stem cells. High hydrostatic pressure stimulates n-C16 mineralization to CO2 by deep-ocean bacterium Alcanivorax xenomutans A28. RNA-protein interaction prediction using network-guided deep learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1